UVA - 11149 (矩阵快速幂+倍增法)】的更多相关文章

第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define INF 0x3f3f3f3f typedef long long ll; ; int n;…
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设S="ABCD",T有子串"A","AB","CD","BCD",那么步数最小方案是选"AB"再接上"CD",而不是提前断开选择"A"+"B…
题目:https://ac.nowcoder.com/acm/contest/885/B 题意:给你x0,x1,让你求出xn,递推式时xn=a*xn-1+b*xn-2 思路:这个n特别大,我自己没有摸清欧拉降幂的性质,瞎套了,然后其实因为底数是一个矩阵,并不能运用这一定理,但是这个n又这么大,我们就可以使用倍增 这里用2倍增有点麻烦,我们就直接用10倍增,然后这个递推式很明显就能看出是一个2*2的矩阵快速幂,然后求解即可 #include<bits/stdc++.h> #define maxn…
https://vjudge.net/problem/UVA-11149 题意: 输入一个n×n矩阵A,计算A+A^2+A^3+...A^k的值. 思路: 矩阵倍增法. 处理方法如下,一直化简下去直到变成A. 代码如下: Matrix solve(Matrix base,int x) { )return base; Matrix temp=solve(); Matrix sum=add(temp,multi(pow(),temp)); ) sum=add(pow(base,x),sum); re…
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可求出下一位f(n)的值并在距震中保存f(n)-----f(n-d+1). 像我这种傻逼看错好几次运算法则的人 = = 第一道矩乘对着老人家模板打得几乎一模一样-----只是觉得他的写法比较优雅= =(虽然我感觉那么多memcpy会不会让常数很大...) CODE: /*===============…
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio> #include <cstring> using namespace std; ; typedef long long Matrix[maxn][maxn]; typedef long long Vector[maxn]; int d, n, m; void matrix_mul(Mat…
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a): //POJ #include <cstdio> #include <iostream> using namespace std; ; struct matrix { ][]; }ans, base; matrix multi(matrix a, matrix b) { matrix…
传送门 首先按照题意构造出转移矩阵. 然后可以矩阵快速幂求出答案. 但是直接做是O(n3qlogm)O(n^3qlogm)O(n3qlogm)的会TTT掉. 观察要求的东西发现我们只关系一行的答案. 于是倍增预处理出logloglog个矩阵每次变成O(n2)O(n^2)O(n2)转移. 代码…
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #include <string.h> long long n; int b; struct state { int s[2][2]; state(int a = 0, int b = 0, int c = 0, int d = 0) { s[0][0] = a, s[0][1] = b, s[1][0] =…
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都是固定的方式 所以可以预处理转移矩阵用矩阵快速幂进行优化 但是如果在计算的时候暴力\(状态^3\)进行转移会TLE 但是注意到在这个时候有用的状态其实只有一个向量 所以就预处理倍增然后用向量乘矩阵来优化到单次\(logn状态^2\)就可以了 有点卡常 //Author: dream_maker #i…