[红外DDE算法]数字细节增强算法的缘由与效果(我对FLIR文档详解) 1. 为什么红外系统中图像大多是14bit(甚至更高)?一个红外系统的性能经常以其探测的范围来区别,以及其对最小等效温差指标.首先是探测的范围,就是常说的动态范围,意思是探测器能够检测到温度红外信号的范围.然后是最小等效温差,意思是探测器能够检测到的最小温度差.这就好比一把尺子,有两个重要指标.第一,就是尺子的量程,意思是它能丈量多少长度范围的物体:第二,就是尺子的最小刻度,就是它能够分辨多少精度的长度.在自然界中,红外信号…
数字麦克风PDM脉冲到PCM信号需要一个二次采样,ST 提过了PDM2PCM的软件包,可以完成上面的工作.软件包源码没有开源,使用手册也简洁的让人抓狂,我觉得可能是因为ST更高级的MCU直接带了硬解码,所以对中低端MCU I2S接口的软解码关注度也不够.幸好之前做过信号处理工作,一些概念和内在逻辑能猜个八九不离十,使用起来没有任何难度就上手了,这个软件包的使用方法主要参考下面几个文档. 参考文档: 1.如何将PDM数字麦克风连接到STM32单片机 AN5027 使用STM32 32位Arm® C…
背景: 上周,把 Taurus.MVC 在 Linux (CentOS7) 上部署任务完成后. 也不知怎么的,忽然就想给框架集成一下WebAPI文档功能,所以就动手了. 以为一天能搞完,结果,好几天过去了. 本来还想集成自动化批量执行测试功能,不过想想还是放到下一版本实现吧. 感觉差不多了,就先和大伙分享一下: Taurus.MVC Nuget 更新: 昨夜,Nuget的Package升级了一下,和源码版本做了下同步. 通常源码的版本都会比Nuget包的靠前一个小版本: 目前:Taurus.MV…
宽动态红外图像增强算法综述回顾过去带你回顾宽动态红外图像增强算法的历史进程,历来学者的一步步革命(新的算法框架提出),一步步改革(改进优化),从简单粗暴到细致全面.正所谓是:改革没有完成时,只有进行时.没有完美的算法,也没有最好的算法,只有更好更优秀的算法.展望未来以现在看90年代的算法,那时候的算法是有点粗糙,但是正是在这一点点的积累上,才有了现在较之优秀完美的算法.正所谓是:站在巨人的肩膀,我们看得更远,不积跬步无以至千里. 目录 为什么需要该算法?摘要主要的三类算法思路大致介绍第一类:基于…
(1)DDE应用背景 (2)DDE算法简介 (3)DDE 实现 (4)DDE 总结和不足 ----------author:pkf -----------------time:2-9 ----------------------qq:1327706646 (1)DDE应用背景 关于图像的增强,无数种方法,有线性映射,直方图均衡拉伸,还有时域,空域的增强等等,但是对于红外图来说,有许多限制,本身红外图是单色的灰度图,局部对比度和亮度有时很弱,常用的线性影射(如AGC)或者直方图统计(如直方图均衡化…
本课题隶属于学校的创新性课题研究项目.2012年就已经做完了,今天一并拿来发表.   目录: --基于谱减法的语音信号增强算法..................................................................... 1 一:语音增强技术概述........................................................................................ 3 二:语音增强的目的.....…
运用ABBYY FineReader OCR文字识别软件,用户能将各种格式的PDF文档保存为新的PDF文档.PDF/A格式文档,以及Microsoft Word.Excel.PPT等格式.在保存与导出的文档的过程中,ABBYY FineReader 15 OCR文字识别软件也配备了各种强大的功能供用户更好地进行文档的输出. 第一.缩小PDF文档的大小 当PDF文档中包含较多图片时,用户可以使用ABBYY FineReader 15 OCR文字识别软件中的"减小文件大小"的功能来缩小所需…
@ 目录 前言 垃圾回收算法实现细节 根节点枚举 安全点 安全区域 记忆集和卡表 写屏障 并发的可达性分析 低延迟GC Shenandoah ZGC 总结 前言 本篇紧接上文,主要讲解垃圾回收算法的实现细节以及对目前最前沿的低延迟GC(Shenandoah.ZGC)做个介绍. 垃圾回收算法实现细节 根节点枚举 我们知道目前的JVM的垃圾回收器都是采用可达性分析算法标记存活对象,该算法首先需要找到GC Roots,然后通过这些根节点向下搜索,能搜索到的就标记为存活对象,未被标记的最后就会被垃圾回收…
夜晚场景图像ISP增强算法 输入输出接口 Input: (1)图像视频分辨率(整型int) (2)图像视频格式(RGB,YUV,MP4等) (3)摄像头标定参数(中心位置(x,y)和5个畸变 系数(2径向,2切向,1棱向),浮点型float) (4)摄像头初始化参数(摄像头初始位置和三个坐标方向 的旋转角度,车辆宽度高度车速等等,浮点型float) Output: (1)图像视频分辨率(浮点型float) (2)图像视频格式  (RGB,YUV,MP4等) (3)调整策略:曝光时间,GAMMA曲…
注:本篇博文是根据其他优秀博文编写的,我只是对其改变了知识的排序,另外代码是<机器学习实战>中的.转载请标明出处及参考资料. 1 Adaboost 算法实现过程 1.1 什么是 Adaboost 算法 Adaboost是英文"Adaptive Boosting"(自适应增强)的缩写,它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器.同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的…