谷歌 MapReduce 初探】的更多相关文章

谷歌“三驾马车”的出现,才真正把我们带入了大数据时代,毕竟没有谷歌,就没有大数据. 上次的分享,我们对谷歌的其中一驾宝车 GFS 进行了管中窥豹,虽然只见得其中一斑,但是也能清楚的知道 GFS 能够把大量廉价的普通机器,聚在一起,充分让每台廉价的机器发挥光和热,不但降低了运营成本,而且解决了一个业界数据存储的难题. 虽然 GFS 解决了 Google 海量数据的存储的难题,但是随之而来的就是“如何从海量数据中快速计算并得到结果的难题”,面对这个难题,谁痛谁想办法,Google 再次进行技术创新,…
MapReduce: Simplified Data Processing on Large Clusters(MapReduce: 简化大型集群下的数据处理) 作者:Jeffrey Dean and Sanjay Ghemawat Abstract(摘要) MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users s…
转自 :http://blog.itpub.net/28912557/viewspace-1127423/ Map-Reduce处理过程(分析气象数据的map-reduce过程)1,调用标准的input类(默认TextInputFormat),将输入数据转化成标准的样式,成为map的输入.2,map过程,提取出需要的数据,这里提取出年份.温度这两个数据,输出成key-value对(标准样式)3,系统自动进行shuffle过程.把key相同的行聚合在一起,输出为key-数据集合(或者数组),成为r…
在<谷歌 MapReduce 初探>中,我们通过统计词频的 WordCount 经典案例,对 Google 推出的 MapReduce 编程模型有了一个认识,但是那种认识,还只是停留在知道有那么个模型存在,并没有认识到骨子里.而且上次初探,也遗留了很多猜想和疑问,这次不妨让我们深入去认识一下 MapReduce,希望能达到一个质的认识. 重点回顾 MapReduce 主要思想是分治法.采取分而治之的思想,将一个大规模的问题,分成多个小规模的问题,把多个小规模问题解决,然后再合并小规模问题的结果…
Hadoop技术已经无处不在.不管是好是坏,Hadoop已经成为大数据的代名词.短短几年间,Hadoop从一种边缘技术成为事实上的标准.看来,不仅现在Hadoop是企业大数据的标准,而且在未来,它的地位似乎一时难以动摇. 谷歌文件系统与MapReduce 我们先来探讨一下Hadoop的灵魂——MapReduce.面对数据的爆炸性增长,谷歌的工程师Jeff Dean和Sanjay Ghemawat架构并发布了两个开创性的系统:谷歌文件系统(GFS)和谷歌MapReduce(GMR).前者是一个出色…
什么是MapReduce Hadoop中的MapReduce是一个简单的软件框架,基于它写出的应用程序可以运行在由上千个商用机器组成的大型集群上,并以一种可靠容错式并行处理TB级数据 MapReduce的起源 源于谷歌在2004年发表的一篇MapReduce的论文,而Hadoop Reduce实际上就是谷歌MapReduce的克隆版本 MapReduce具有的特点 众所周知MapReduce是一种很受欢迎的软件框架,尤其是我们国家发展到现在互联网的浪潮愈演愈烈,那么它都有什么特点呢? 1.易于编…
批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理等场景中,具有易于编程,良好的扩展性与容错性以及高吞吐率等特点.它主要由两部分组成:编程模型和运行时环境.其中编程模型为用户提供了非常易用的编程接口,用户只需像编写串行程序一样实现几个简单的函数即可实现一个分布式程序,而其他比较复杂的工作,如节点间的通信,节点失效,数据切分等,全部由MapReduc…
@ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapReduce运行机制 过程描述 第一阶段:作业提交(图1-4步) 第二阶段:作业初始化(图5-7步) 第三阶段:任务的分配(图8) 第四阶段:任务的执行(图9-11) 第五阶段:作业完成 Tips 知识点:进度和状态更新 4.MR各组成部分工作机制原理 4.1概览: 4.2 MapTask工作机制 4.…
摘要:Hadoop已经成为大数据的代名词.短短几年间,Hadoop从一种边缘技术成为事实上的标准.而另一方面,MapReduce在谷歌已不再显赫.当企业瞩目MapReduce的时候,谷歌好像早已进入到了下一个时代.      Hadoop技术已经无处不在.不管是好是坏,Hadoop已经成为大数据的代名词.短短几年间,Hadoop从一种边缘技术成为事实上的标准.看来,不仅现在Hadoop是企业大数据的标准,而且在未来,它的地位似乎一时难以动摇.谷歌文件系统与MapReduce     我们先来探讨…
Hadoop简介 Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构. Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中. Hadoop的核心是分布式文件系统(Hadoop Distributed File System,HDFS)和MapReduce. Hadoop被公认为行业大数据标准开源软件,在分布式环境下提供了海量数据的处理能力. Hadoop的特性 Hadoop是一个能够对大量数据进…