L25词嵌入进阶GloVe模型】的更多相关文章

词嵌入进阶 在"Word2Vec的实现"一节中,我们在小规模数据集上训练了一个 Word2Vec 词嵌入模型,并通过词向量的余弦相似度搜索近义词.虽然 Word2Vec 已经能够成功地将离散的单词转换为连续的词向量,并能一定程度上地保存词与词之间的近似关系,但 Word2Vec 模型仍不是完美的,它还可以被进一步地改进: 子词嵌入(subword embedding):FastText 以固定大小的 n-gram 形式将单词更细致地表示为了子词的集合,而 BPE (byte pair…
什么是GloVe GloVe(Global Vectors for Word Representation)是一个基于全局词频统计(count-based & overall statistics)的词表征(word representation)工具,它可以把一个单词表达成一个由实数组成的向量,这些向量捕捉到了单词之间一些语义特性,比如相似性(similarity).类比性(analogy)等.我们通过对向量的运算,比如欧几里得距离或者cosine相似度,可以计算出两个单词之间的语义相似性.…
一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同理. 但是这样的表示方法有一个缺点,看是看下图中右侧给出的例子,比如给出这么一句不完整的话: **I want a glass of orange ___** 假设通过LSTM算法学到了空白处应该填"juice".但是如果将orange改成apple,即 **I want a glass…
1.使用词嵌入 给了一个命名实体识别的例子,如果两句分别是“orange farmer”和“apple farmer”,由于两种都是比较常见的,那么可以判断主语为人名. 但是如果是榴莲种植员可能就无法判断了,因为比较不常见. 此时使用 词嵌入,是一个训练好的模型,能够表示说,oragne和durian是类似的词,farmer和cultivator是同义词. 词向量需要在大量数据上进行训练,此时又谈到了迁移学习. 首先从大的语料库中学习词嵌入,然后将模型运用到小的数据集上,或许还可以从小数据集上更…
一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是一个word,每一列是context.共现矩阵就是计算每个word在每个context出现的频率.由于context是多种词汇的组合,其维度非常大,我们希望像network embedding一样,在context的维度上降维,学习word的低维表示.这一过程可以视为共现矩阵的重构问题,即recon…
参考 1. Word Representation 之前介绍用词汇表表示单词,使用one-hot 向量表示词,缺点:它使每个词孤立起来,使得算法对相关词的泛化能力不强. 从上图可以看出相似的单词分布距离较近,从而也证明了Word Embeddings能有效表征单词的关键特征. 2. 词嵌入(word embedding) Transfer learning and word embedding: 从海量词汇库中学习word embeddings(即所有单词的特征向量),或者从网上下载预训练好的w…
在cips2016出来之前,笔者也总结过种类繁多,类似词向量的内容,自然语言处理︱简述四大类文本分析中的"词向量"(文本词特征提取)事实证明,笔者当时所写的基本跟CIPS2016一章中总结的类似,当然由于入门较晚没有CIPS2016里面说法权威,于是把CIPS2016中的内容,做一个摘录. CIPS2016 中文信息处理报告<第五章 语言表示与深度学习研究进展.现状及趋势>第三节 技术方法和研究现状中有一些关于语言表示模型划分的内容P33-P35,其中: 语言表示方法大体上…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3词嵌入的特性 properties of word embedding Mikolov T, Yih W T, Zweig G. Linguistic regularities in continuous space word representations[J]. In HLT-NAACL, 2013. 词嵌入可以用来解决类比推理问题(reasonable analogies) man 如果对应woman,此时左…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇表中的词汇. 这种表示方法最大的缺点是 它把每个词孤立起来,这样使得算法对相关词的泛化能力不强 例如:对于已知句子"I want a glass of orange ___ " 很可能猜出下一个词是"juice". 如果模型已知读过了这个句子但是当看见句子"I…
Week 2 Quiz: Natural Language Processing and Word Embeddings (第二周测验:自然语言处理与词嵌入) 1.Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation…