Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想 目录 Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想 0x00 摘要 0x01 Flink 是什么 0x02 Alink 是什么 0x03 Alink设计思路 1. 白手起家 2. 替代品如何造成威胁 3. 用户角度看设计 底层逻辑Flink 开发工具 4. 竞争对手角度看设计 5. 企业角度看设计 6. 设计原则总结 0x04 KMeans算法实现看设计 1. KMeans算法 2. Flink…
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0x02 基本概念 2.1 泰勒展开 如何通俗推理? 2.2 牛顿法 2.2.1 泰勒一阶展开 2.2.2 泰勒二阶展开 2.2.3 高维空间 2.2.4 牛顿法基本流程 2.2.5 问题点及解决 2.3 拟牛顿法 2.4 L-BFGS算法 0x03 优化模型 -- L-BFGS算法 3.1 如何分布…
Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 目录 Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 0x00 摘要 0x01 Alink设计原则 0x02 Alink实例代码 算法调用 算法主函数 算法模块举例 0x03 顶层 -- 流水线 1. 机器学习重要概念 2. Alink中概念实现 3. 结合实例看流水线 0x04 中间层 -- 算法组件 1. Algorithm operators 2. Mapper(提前说明) 3. 系统内置算法组件 Mo…
二分K-means聚类(bisecting K-means) 算法优缺点: 由于这个是K-means的改进算法,所以优缺点与之相同. 算法思想: 1.要了解这个首先应该了解K-means算法,可以看这里这个算法的思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇(或者选择最大的簇等,选择方法多种).以此进行下去,直到簇的数目等于用户给定的数目k为止.2.以上隐含着一个原则是:因为聚类的误差平方和能够衡量聚类性能,该值越小表示…
最近研究数据挖掘的相关知识,总是搞混一些算法之间的关联,俗话说好记性不如烂笔头,还是记下了以备不时之需. 首先明确一点KNN与Kmeans的算法的区别: 1.KNN算法是分类算法,分类算法肯定是需要有学习语料,然后通过学习语料的学习之后的模板来匹配我们的测试语料集,将测试语料集合进行按照预先学习的语料模板来分类 2Kmeans算法是聚类算法,聚类算法与分类算法最大的区别是聚类算法没有学习语料集合. K-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据他们的属性分为k个聚类以便使得…
文章内容转载自:http://blog.csdn.net/sinat_35512245/article/details/55051306                                http://blog.csdn.net/baimafujinji/article/details/50570824 -------------------------------------------------------------------------------------------…
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 1.1.2 求解 1.1.3 随机梯度下降 1.2 LR的并行计算 1.3 传统机器学习 1.4 在线学习 1.5 FTRL 1.5.1 regret & sparsity 1.5.2 FTRL的伪代码 1.5.3 简要理解 0x02 示例代码 0x03 问题 0x04 总体逻辑 0xFF 参考 0…
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 2.1.1 训练模型 2.1.2 加载模型 2.2 分割高维向量 2.3 迭代训练 2.3.1 Flink Stream迭代功能 2.3.2 迭代构建 2.3.2.1 迭代的输入 2.3.2.2 迭代的反馈 2.3.3 迭代体 CalcTask / ReduceTask 2.3.3.1 迭代初始化…
[Alink漫谈之三] AllReduce通信模型 目录 [Alink漫谈之三] AllReduce通信模型 0x00 摘要 0x01 MPI是什么 0x02 Alink 实现MPI的思想 0x03 如何实现共享 1. Task相关概念 2. TaskManager 3. 状态共享 3.1 概念剖析 算法角度:ComContext 框架角度:IterativeComQueue Session角度:SessionSharedObjs Subtask角度:IterTaskObjKeeper 3.2…
Alink漫谈(四) : 模型的来龙去脉 目录 Alink漫谈(四) : 模型的来龙去脉 0x00 摘要 0x01 模型 1.1 模型包含内容 1.2 Alink的模型文件 0x02 流程图 0x03 生成模型 3.1 生成模型 3.2 转换DataSet 3.3 存储为Table 0x04 存储模型 4.1 存储代码 0x05 读取模型 0x06 预测 6.1 生成runtime rapper 6.2 加载模型 6.3 预测 0x07 流式预测 0x08 总结 0x00 摘要 Alink 是阿…
Alink漫谈(五) : 迭代计算和Superstep 目录 Alink漫谈(五) : 迭代计算和Superstep 0x00 摘要 0x01 缘由 0x02 背景概念 2.1 四层执行图 2.2 Task和SubTask 2.3 如何划分 Task 的依据 2.4 JobGraph 2.5 BSP模型和Superstep BSP模型 BSP模型的实现 Flink-Gelly 0x03 Flink的迭代算法(superstep-based) 3.1 Bulk Iterate 3.2 迭代机制 0…
Alink漫谈(二十二) :源码分析之聚类评估 目录 Alink漫谈(二十二) :源码分析之聚类评估 0x00 摘要 0x01 背景概念 1.1 什么是聚类 1.2 聚类分析的方法 1.3 聚类评估 0x02 Alink支持的评估指标 2.1 轮廓系数(silhouette coefficient): 2.2 Calinski-Harabaz(CH) 2.3 Davies-Bouldin指数(Dbi) 2.4 Rand index(兰德指数)(RI) .Adjusted Rand index(调…
Alink漫谈(六) : TF-IDF算法的实现 目录 Alink漫谈(六) : TF-IDF算法的实现 0x00 摘要 0x01 TF-IDF 1.1 原理 1.2 计算方法 0x02 Alink示例代码 2.1 示例代码 2.2 TF-IDF模型 2.3 TF-IDF预测 0x03 分词 Segment 3.1 结巴分词 3.2 分词过程 0x04 训练 4.1 计算IDF 4.2 排序 4.2.1 SortUtils.pSort 采样SampleSplitPoint 归并 SplitPoi…
Alink漫谈(七) : 如何划分训练数据集和测试数据集 目录 Alink漫谈(七) : 如何划分训练数据集和测试数据集 0x00 摘要 0x01 训练数据集和测试数据集 0x02 Alink示例代码 0x03 批处理 3.1 得到记录数 3.2 随机选取记录 3.2.1 得到总记录数 3.2.2 决定每个task选择记录数 3.2.3 每个task选择记录 3.3 设置训练数据集和测试数据集 0x04 流处理 0x05 参考 0x00 摘要 Alink 是阿里巴巴基于实时计算引擎 Flink…
Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 目录 Alink漫谈(八) : 二分类评估 AUC.K-S.PRC.Precision.Recall.LiftChart 如何实现 0x00 摘要 0x01 相关概念 0x02 示例代码 2.1 主要思路 0x03 批处理 3.1 EvalBinaryClassBatchOp 3.2 BaseEvalClassBatchOp 3.2.0 调用关系综述 3.2.1 calL…
Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scaling) 1.3 特征哈希(Hashing Trick) 0x02 数据集 0x03 示例代码 0x04 标准化缩放 StandardScaler 4.1 StandardScalerTrainBatchOp 4.2 StatisticsHelper.summary 4.3 BuildStandard…
Alink漫谈(十) :线性回归实现 之 数据预处理 目录 Alink漫谈(十) :线性回归实现 之 数据预处理 0x00 摘要 0x01 概念 1.1 线性回归 1.2 优化模型 1.3 损失函数&目标函数 1.4 最小二乘法 0x02 示例代码 0x03 整体概述 0x04 基础功能 4.1 损失函数 4.1.1 导数和偏导数 4.1.2 方向导数 4.1.3 Hessian矩阵 4.1.4 平方损失函数 in Alink 4.2 目标函数 4.2.1 梯度 4.2.2 梯度下降法 4.2.…
Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函数 1.4 优化过程 1.4.1 迭代法 1.4.2 梯度下降 1.5 相关公式 1.5.1 加权求和 h 1.5.2 神经元输出值 a 1.5.3 输出层的输出值 y 1.5.4 激活函数g(h) 1.5.5 损失函数E 1.5.6 误差反向传播--更新权重 1.5.7 输出层增量项 δo 1.5…
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总体逻辑 0x02 训练神经网络 2.1 初始化模型 2.2 压缩数据 2.3 生成优化目标函数 2.4 生成目标函数中的拓扑模型 2.4.1 AffineLayerModel 2.4.2 FuntionalLayerModel 2.4.3 SoftmaxLayerModelWithCrossEntr…
Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 目录 Alink漫谈(十六) :Word2Vec源码分析 之 建立霍夫曼树 0x00 摘要 0x01 背景概念 1.1 词向量基础 1.1.1 独热编码 1.1.2 分布式表示 1.2 CBOW & Skip-Gram 1.2.1 CBOW 1.2.2 Skip-gram 1.3 Word2vec 1.3.1 Word2vec基本思想 1.3.2 Hierarchical Softmax基本思路 1.3.3 Hierarchi…
Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 目录 Alink漫谈(十七) :Word2Vec源码分析 之 迭代训练 0x00 摘要 0x01 前文回顾 1.1 上文总体流程图 1.2 回顾霍夫曼树 1.2.1 变量定义 1.2.2 为何要引入霍夫曼树 0x02 训练 2.1 训练流程 2.2 生成训练模型 2.3 初始化词典&缓冲 2.4 更新模型UpdateModel 2.5 计算更新 2.5.1 sigmoid函数值近似计算 2.5.2 窗口及上下文 2.5.3 训练…
Alink漫谈(十八) :源码解析 之 多列字符串编码MultiStringIndexer 目录 Alink漫谈(十八) :源码解析 之 多列字符串编码MultiStringIndexer 0x00 摘要 0x01 概念 0x02 示例代码 0x03 总体逻辑 0x04 Add Index to Token 4.1 合并计算单词个数 4.1.1 打散输入数据 4.1.2 分组计算个数 4.2 合并计算单词个数 0x05 输出模型 0x06 预测 6.1 加载模型 6.2 预测 0xFF 参考 0…
Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 目录 Alink漫谈(十九) :源码解析 之 分位点离散化Quantile 0x00 摘要 0x01 背景概念 1.1 离散化 1.2 分位数 1.3 四分位数 0x02 示例代码 0x03 总体逻辑 0x04 训练 4.1 quantile 4.2 countElementsPerPartition 4.3 MultiQuantile 4.4 QIndex 0x05 输出模型 0x06 预测 6.1 加载模型 6.2 预测…
Alink漫谈(二十) :卡方检验源码解析 目录 Alink漫谈(二十) :卡方检验源码解析 0x00 摘要 0x01 背景概念 1.1 假设检验 1.2 H0和H1是什么? 1.3 P值 (P-value) 1.4 交叉表 1.5 卡方 1.5.1 公式 1.5.2 基本思想 1.5.3 实现过程 1.6 自由度 0x02 示例代码 0x03 总体逻辑 0x04 训练 4.1 ChiSquareTest 4.2 Crosstab 4.3 构建卡方检验 0xFF 参考 0x00 摘要 Alink…
用c语言写了kmeans算法的串行程序,再用mpi来写并行版的,貌似参照着串行版来写并行版,效果不是很赏心悦目~ 并行化思路: 使用主从模式.由一个节点充当主节点负责数据的划分与分配,其他节点完成本地数据的计算,并将结果返回给主节点.大致过程如下: 1.进程0为主节点,先从文件中读取数据集,然后将数据集划分并传给其他进程: 2.进程0选择每个聚类的中心点,并发送给其他进程: 3.其他进程计算数据块中每个点到中心点的距离,然后标出每个点所属的聚类,并计算每个聚类所有点到其中心点的距离之和,最后将这…
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准.以决定预期结果,…
最近在苦于思考kmeans算法的MPI并行化,花了两天的时间把该算法看懂和实现了串行版. 聚类问题就是给定一个元素集合V,其中每个元素具有d个可观察属性,使用某种算法将V划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高. 下面是google到该算法的一个流程图,表意清楚: 1.随机选取数据集中的k个数据点作为初始的聚类中心: 2.分别计算每个数据点到每个中心的距离,选取距离最短的中心点作为其聚类中心: 3.利用目前得到的聚类重新计算中心点: 4.重复步骤2…
这几天学习了无监督学习聚类算法Kmeans,这是聚类中非常简单的一个算法,它的算法思想与监督学习算法KNN(K近邻算法)的理论基础一样都是利用了节点之间的距离度量,不同之处在于KNN是利用了有标签的数据进行分类,而Kmeans则是将无标签的数据聚簇成为一类.接下来主要是我对<机器学习实战>算法示例的代码实现和理解. 首先叙述下算法项目<对地图上的俱乐部进行聚类>的要求:朋友Drew希望让我们带她去城里庆祝生日,由于其他一些朋友也会过来,所以需要提供一个大家都可行的计划,Drew给出…
K-means(K均值)是基于数据划分的无监督聚类算法. 一.基本原理       聚类算法可以理解为无监督的分类方法,即样本集预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类.聚类算法可以分为基于划分的方法.基于联通性的方法.基于概率分布模型的方法等,K-means属于基于划分的聚类方法. 基于划分的方法是将样本集组成的矢量空间划分为多个区域{Si}i=1k,每个区域都存在一个区域相关的表示{ci}i=1k,通常称为区域中心.对于每个样本,可以建立一种样本到区域中心的映射q…
目录 EM算法(1):K-means 算法 EM算法(2):GMM训练算法 EM算法(3):EM算法运用 EM算法(4):EM算法证明 EM算法(1) : K-means算法 1. 简介 K-means算法是一类无监督的聚类算法,目的是将没有标签的数据分成若干个类,每一个类都是由相似的数据组成.这个类的个数一般是认为给定的. 2. 原理 假设给定一个数据集$\mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2,...,\mathbf{x}_N \}$, 和类的个数K…