P1667 数列】的更多相关文章

题目描述 给定一个长度是n的数列A,我们称一个数列是完美的,当且仅当对于其任意连续子序列的和都是正的.现在你有一个操作可以改变数列,选择一个区间[X,Y]满足Ax +Ax+1 +…+ AY<0,1<X<=Y<n,令S=Ax +Ax+1 +…+ AY,对于Ax-1和AY+1分别加上S,Ax和AY分别减去S(如果X=Y就减两次).问最少几次这样的操作使得最终数列是完美的. 输入输出格式 输入格式: 第一行一个数n,以下n个数. [数据规模] 对于20%的数据,满足1≤N≤5; 对于10…
洛谷P1667 数列 题目描述 给定一个长度是n的数列A,我们称一个数列是完美的,当且仅当对于其任意连续子序列的和都是正的.现在你有一个操作可以改变数列,选择一个区间[X,Y]满足\(A_X +A_{X+1} +-+ A_Y<0,1<X<=Y<n,\)令\(S=A_X +A_{X+1} +-+ A_Y\),对于\(A_{X-1}\)和\(A_{Y+1}\)分别加上S,\(A_X\)和\(A_Y\)分别减去S(如果X=Y就减两次).问最少几次这样的操作使得最终数列是完美的. 输入输出…
题目链接 对于一个区间\([x,y]\),设这个区间的总和为\(S\) 那么我们在前缀和(设为\(sum[i]\))的意义上考虑到原操作其实就是\(sum[x−1]+=S\) , \(sum[x]+S−S\) , \(sum[y]−=S\) , \(sum[y+1]+S−S\). 而且我们注意到,本来就有\(sum[x−1]+S==sum[y]\),所以观察到其实原操作只是单纯的交换了一下\(sum[x−1]\)和\(sum[y]\)而已,而且这个\([x,y]\)区间任意选择,故原题已经可以改…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一条命令,格式参见问题描述中的表格.任何时刻数列中最多含有500 000个数,数列中任何一个数字均在[-1 000, 1 000]内.插入的数字总数不超过4 000 000个,输入文件大小不超过20MBytes. Output 对于输入数据中的GET-SUM和MAX-SUM操作,向输出文件依次打印结果…
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段. 给定正整数数列,求出全部片段包含的所有的数之和.如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
自己没动脑子,大部分内容转自:http://www.jb51.net/article/37286.htm 斐波拉契数列,看起来好像谁都会写,不过它写的方式却有好多种,不管用不用的上,先留下来再说. 1.递归公式:f[n]=f[n-1]+f[n-2],f[1]=f[2]=1;(比较耗时,效率不高) 代码: int fib(int n) //递归实现 { ) { ; } || n==) ; )+fib1(n-); } 2.数组实现:空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快.代码:…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
题目描述 对于给定的一个长度为N的正整数数列A[i],现要将其分成M(M≤N)段,并要求每段连续,且每段和的最大值最小. 关于最大值最小: 例如一数列4 2 4 5 1要分成3段 将其如下分段: [4 2][4 5][1] 第一段和为6,第2段和为9,第3段和为1,和最大值为9. 将其如下分段: [4][2 4][5 1] 第一段和为4,第2段和为6,第3段和为6,和最大值为6. 并且无论如何分段,最大值不会小于6. 所以可以得到要将数列4 2 4 5 1要分成3段,每段和的最大值最小为6. 输…