[iTyran原创]iPhone中OpenGL ES显示3DS MAX模型之一:OBJ文件格式分析作者:yuezang - iTyran     在iOS的3D开发中常常需要导入通过3DS MAX之类的3D设计软件生成的模型.因为OpenGL ES是不能直接读取这些文件的,所以常常需要开发人员增加接口来导入.通常的做法是在建模软件中建立3D模型之后在OpenGL ES中导入并进行控制.    3DS MAX通常的保存格式有*.max(现在生成的版本的格式),*.3ds(低版本的3ds Max生成…
伴随着互联网的发展,从桌面端走向Web端.移动端必然的趋势.互联网技术的兴起极大地改变了我们的娱乐.生活和生产方式.尤其是HTML5/WebGL技术的发展更是在各个行业内引起颠覆性的变化.随着WebGL标准被广泛接受,出现了许多基于HTML5的开源三维引擎,如threejs.scenejs等.尤其threejs使用非常广泛,一方面由于其使用门槛较低,另一方面是其支持若干种三维文件格式,如stl.obj.3ds.obj.dae.fbx等.对于中小规模的三维模型,使用threejs可以快速搭建一个基…
0 引言 Marvin是普林斯顿视觉实验室(PrincetonVision)于2015年提出的轻量化GPU加速的多维深度学习网络框架.该框架采用纯c/c++编写,除了cuda和cudnn以外,不依赖其他库,编译非常简单,功能也相当强大,用于深度神经网络的快速原型开发非常好用.缺点在于没有提供API,所有的代码集中在marvin.hpp一个文件中,读起来非常困难.好在提供了视频格式的PPT,对框架和代码进行解读.下面将基于官网视频/ppt对该框架进行介绍. 1 相关链接 不想看我翻译的同学可以直接…
0. 引子 在训练轻量化模型时,经常发生的情况就是,明明 GPU 很闲,可速度就是上不去,用了多张卡并行也没有太大改善. 如果什么优化都不做,仅仅是使用nn.DataParallel这个模块,那么实测大概只能实现一点几倍的加速(按每秒处理的总图片数计算),不管用多少张卡.因为卡越多,数据传输的开销就越大,副作用就越大. 为了提高GPU服务器的资源利用率,尝试了一些加速的手段. 基于Pytorch1.6.0版本实现,官方支持amp功能,不再需要外部apex库: 此外比较重要的库是Dali. 梳理了…
"3D模型体量过大.面数过多.传输展示困难",用户面对这样的3D数据,一定不由得皱起眉头.更便捷.快速处理三维数据,是每个3D用户对高效工作的向往. 在老子云最新上线的单模型轻量化服务里,你可以发现,原来还有这种方式能更快速高效地应用三维! 击破三大痛点轻量三维便捷一点 作为极具创新力的三维技术产品,老子云单模型轻量化向我们展示了全新的模型处理方式. 01全自动!3D处理不再低效 如果你从事的是3D可视化项目开发岗位,处理3D模型肯定是让你最头疼的.想快速推进项目进度,可面对数据量庞大…
前言 一个模型通常是由三个部分组成:网格.纹理.材质.在一开始的时候,我们是通过Geometry类来生成简单几何体的网格.但现在我们需要寻找合适的方式去表述一个复杂的网格,而且包含网格的文件类型多种多样,对应的描述方式也存在着差异.这一章我们主要研究obj格式文件的读取. 因为精力问题无法对obj做完整支持,如果需要读取obj格式的模型文件,推荐各位使用ASSIMP库 纹理映射回顾 DirectX11 With Windows SDK完整目录 Github项目源码 欢迎加入QQ群: 727623…
### instanced rendering. send shared data to gpu just once mesh, texture, leaves push every instance’s unique data position, color, scale With a single draw call, an entire forest grows. unity3d Using instances of a prefab automatically are using the…
CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间,简化底层实现方式等这几个方面,提出了深度可分离卷积,分组卷积,可调超参数降低空间分辨率和减少通道数,新的激活函数等方法,并针对一些现有的结构的实际运行时间作了分析,提出了一些结构设计原则,并根据这些原则来设计重新设计原结构. 注:除了以上这种直接设计轻量的.小型的网络结构的方式外,还包括使用知识蒸…
​  前言  由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难.特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究. 论文提出了一种新颖的 Ghost 模块,可以从廉价操作中生成更多的特征图.提出的 Ghost 模块可以作为即插即用的组件来升级现有的卷积神经网络.堆叠Ghost Module建立了轻量级的 GhostNet. GhostNet 可以实现比 MobileNetV3 更高的识别性能(例如 75.7% 的 top-1 准确率),并…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/269 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 前言 卷积神经网络的结构优化和深度加深,带来非常显著的图像识别效果提升,但同时也带来了高计算复杂度和更长的计算时间,实际工程应用中对效率的考虑也很多,研究界与工业界近年都在努力「保持效果的情况下压缩…