洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小生成树弄出来,因为要求次小生成树.至于为什么次小一定只在最小的基础上改变了一条边,我也不会严谨的证明......打表找规律大法好 剩下的可以有一堆数据结构来维护最大值和次大值(原理两位巨佬都讲清楚了,这里只分析一下算法的优劣) kruscal+倍增+LCA 山楠巨佬的做法,我也写了这一种.复杂度\(…
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵树中的n-1条边为“树边” 其他m-n+1条边为“非树边” 枚举每条非树边(x,y,z)添加到最小生成树中 可以在x,y之间构成一个环 设x,y之间的路径最大值为val1 次大值为val2(val1>val2) 则有以下两种情况 当z>val1时 则把val1对应的边换成(x,y,z) 得到一个候…
题目大意:给定一个 N 个顶点,M 条边的带权无向图,求该无向图的一个严格次小生成树. 引理:有至少一个严格次小生成树,和最小生成树之间只有一条边的差异. 题解: 通过引理可以想到一个暴力,即:先求出最小生成树,并记录树边,再枚举删除 MST 中的每一条边,每次重新做一次最小生成树算法,并将计算出来的所有结果取最小值即为答案.以 Kruskal 算法为例,暴力的时间复杂度为 \(O(n^2logn)\). 现在可以考虑在已知最小生成树的基础上,枚举每条非树边,将该边加入最小生成树中,并删去加入边…
题目描述 小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e)…
一道LCA+生成树 BZOJ原题链接 洛谷原题链接 细节挺多,我调了半天..累炸.. 回到正题,我们先求出随便一棵最小生成树(设边权和为\(s\)),然后扫描剩下所有边,设扫到的边的两端点为\(x,y\),长度为\(z\),树上\(x,y\)间边权最大的边和严格次大的边分别为\(dis_1,dis_2\). 如果\(z>dis_1\),那么这条边可以替换掉\(dis_1\)对应的边,则得到一个可能答案\(s-dis_1+z\). 如果\(z=dis_1\),那么这条边可以替换掉\(dis_2\)…
题意:给你一个矩形书架,每个点是这本书的页数,每次询问(x1,y1)(x2,y2)这个小矩形里最少需要取几本书使得页数和等于Hi. 题解:小数据二位前缀和预处理+二分答案,大数据一行所以用主席树做,感觉数组开得玄学,洛谷上很好过,BZOJ经历了TLE->MLE->CE emmmmm,找不到CE在哪里. #include<bits/stdc++.h> #define long long ll using namespace std; const int maxn=5e5+100; i…
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/problemnew/show/P1447 首先,题意就是求 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) -1 ]: 方法1:容斥原理 枚举每个数作为 gcd 被算了几次: 对于 d ,算的次数 f[d] 就是 n/d 和 m/d 中互质的…
题目链接 构建完MST后,枚举非树边(u,v,w),在树上u->v的路径中找一条权值最大的边(权为maxn),替换掉它 这样在 w=maxn 时显然不能满足严格次小.但是这个w可以替换掉树上严格小于maxn的次大边 用倍增维护MST上路径的最大值.次大值,每条非树边的查询复杂度就为O(logn) ps:1.倍增更新次大值时,未必是从最大值转移,要先赋值较大的次大值,再与较小的那个最大值比较. 2.maxn!=w时,是可以从maxn更新的(不能更新就是上面情况啊) 倍增处理部分我还是在dfs里写吧…
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\)的区间值.在这些预处理结果的基础上,我们可以进一步求出任意长度区间的答案. 比如区间最值问题\((RMQ)\)就可以使用倍增解决.对于每个起始点,预处理长度为\(2^n\)的区间最值.之后每段区间都可以以此求出,如: \(f(1,7)=\max(f(1,4),f(3,7))\) 以上是最简单的一个举例.在计…
题目大意:给你$k(k\leqslant10^6)$个数,$f(x)$表示$x$的约数在$k$个数中出现的次数,在这任何数都是$0$的约数.$m(m\leqslant10^6)$次询问,每次给出$l,r(l,r\leqslant10^6)$,求$\sum\limits_{i=l}^rf(i)$ 题解:求出每个数出现次数,直接加到它的倍数上,$O(n\log_2n)$,然后前缀和,直接输出,注意$l=0$的情况 卡点:无 C++ Code: #include <cstdio> #define m…