最近再次看了一下IPOL网站,有一篇最近发表的文章,名字就是Multiscale Retinex,感觉自己对这个已经基本了解了,但还是进去看了看,也有一些收获,于是抽空把他们稍微整理了下,原始文章及其配套代码详见:http://www.ipol.im/pub/art/2014/107/. 之前在我的 带色彩恢复的多尺度视网膜增强算法(MSRCR)的原理.实现及应用 一文中已经较为详细的描述了Multiscale Retinex的基本原理和应用,这里就不再做过多的说明.为表述方便,还是贴出其基本的…
前一段时间研究了一下图像增强算法,发现Retinex理论在彩色图像增强.图像去雾.彩色图像恢复方面拥有很好的效果,下面介绍一下我对该算法的理解. Retinex理论 Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关.Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟…
图像增强方面我共研究了Retinex.暗通道去雾.ACE等算法.其实,它们都是共通的.甚至可以说,Retinex和暗通道去雾就是同一个算法的两个不同视角,而ACE算法又是将Retinex和灰度世界等白平衡理论相结合的产物.下面将依次讨论,每个算法写一个心得,欢迎拍砖. 今天先写Retinex.Retinex理论认为,人眼观测到的图像S是光照图像L和物体反射图像R的乘积.而R才是真实的恒常性的图像,但是怎么从观测图像S中计算R呢?这是个病态问题,根本不可解.研究者就通过加以一定的约束条件,比如光照…
http://www.cnblogs.com/sleepwalker/p/3676600.html?utm_source=tuicool http://blog.csdn.net/carson2005/article/details/9502053 Retinex理论 Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关.Retinex这个词是由视网膜(Retina)和…
机器学习实战(Machine Learning in Action)学习笔记————06.k-均值聚类算法(kMeans)学习笔记 关键字:k-均值.kMeans.聚类.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbh…
前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second edition)一书的作者所给,关于这3中二叉树在前面的博文算法设计和数据结构学习_4(<数据结构和问题求解>part4笔记)中已经有所介绍.这里不会去详细介绍它们的实现和规则,一是因为这方面的介绍性资料超非常多,另外这3种树的难点都在插入和删除部分,其规则本身并不多,但是要用文字和图形解释其实还蛮耗…
1.集成学习概述 集成学习算法可以说是现在最火爆的机器学习算法,参加过Kaggle比赛的同学应该都领略过集成算法的强大.集成算法本身不是一个单独的机器学习算法,而是通过将基于其他的机器学习算法构建多个学习器并集成到一起.集成算法可以分为同质集成和异质集成,同质集成是值集成算法中的个体学习器都是同一类型的学习器,比如都是决策树:异质集成是集成算法中的个体学习器由不同类型的学习器组成的.(目前比较流行的集成算法都是同质算法,而且基本都是基于决策树或者神经网络的) 集成算法是由多个弱学习器组成的算法,…
一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则为高通滤波器,当然增强一副图像是为最后获取图像有用信息服务为主.一般的算法流程可为:图像去燥.增加清晰度(对比度).灰度化或者获取图像边缘特征或者对图像进行卷积.二值化等,上述四个步骤往往可以通过不同的步骤进行实现,后续将针对此方面内容进行专题实验,列举其应用场景和处理特点. 本文章是一篇综合性文章…
代码地址如下:http://www.demodashi.com/demo/11578.html 一.写在前面 之前在简书首页看到了Python爬虫的介绍,于是就想着爬取B站弹幕并绘制词云,因此有了这样一个简单的尝试,从搭建环境到跑通demo,不懂语法,不知含义,装好环境,查到API,跑通Demo,就是目标!纯零基础萌新! 关于环境的安装及调试过程中遇到的问题记录请移步 二.Python爬取B站弹幕 环境说明 windows8.1 x64+python3.6+scrapy1.4 参考文档: scr…
builder模式的新学习 静态工厂和构造器有个共同的局限性:他们不能很好的扩展到大量的可选参数.大多数产品在牧歌可选与中都会有非零的值 对于这种类,应该使用哪种构造器或者静态方法来进行编写?程序员一般习惯采用重叠构造器(telescoping constructor)模式.在这种模式下,你可以第一个只有必要参数的构造器,第二个构造器有一个可选参数,第三个有两个可选参数,以此类推,最后一个构造器包含所有的可选参数. public class NutritionFacts { private fi…