1. Transformer模型 在Attention机制被提出后的第3年,2017年又有一篇影响力巨大的论文由Google提出,它就是著名的Attention Is All You Need[1].这篇论文中提出的Transformer模型,对自然语言处理领域带来了巨大的影响,使得NLP任务的性能再次提升一个台阶. Transformer是一个Seq2Seq架构的模型,所以它也由Encoder与Decoder这2部分组成.与原始Seq2Seq 模型不同的是:Transformer模型中没有RN…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…
1. BERT简介 Transformer架构的出现,是NLP界的一个重要的里程碑.它激发了很多基于此架构的模型,其中一个非常重要的模型就是BERT. BERT的全称是Bidirectional Encoder Representation from Transformer,如名称所示,BERT仅使用了Transformer架构的Encoder部分.BERT自2018年由谷歌发布后,在多种NLP任务中(例如QA.文本生成.情感分析等等)都实现了更好的结果. BERT的效果如此优异,其中一个主要原…
0.前言 深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新ing) NLP机器翻译深度学习实战课程·零(基础概念) NLP机器翻译深度学习实战课程·壹(RNN base) NLP机器翻译深度学习实战课程·贰(RNN+Attention base) NLP机器翻译深度学习实战课程·叁(CNN base) NLP机器翻译深度学习实战课程·肆(Self…
1. 自然语言处理简介 根据工业界的估计,仅有21% 的数据是以结构化的形式展现的[1].在日常生活中,大量的数据是以文本.语音的方式产生(例如短信.微博.录音.聊天记录等等),这种方式是高度无结构化的.如何去对这些文本数据进行系统化分析.理解.以及做信息提取,就是自然语言处理(Natural Language Processing,NLP)需要做的事情. 在NLP中,常见的任务包括:自动摘要.机器翻译.命名体识别(NER).关系提取.情感分析.语音识别.主题分割,等等-- 在NLP与深度学习系…
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的向量,decode意思是将输入…
深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新ing) NLP机器翻译深度学习实战课程·零(基础概念) NLP机器翻译深度学习实战课程·壹(RNN base) NLP机器翻译深度学习实战课程·贰(RNN+Attention base) NLP机器翻译深度学习实战课程·叁(CNN base) NLP机器翻译深度学习实战课程·肆(Self-Atte…
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于:  深度学习知识库  分类: deep learning(28)  版权声明:本文为博主原创文章,未经博主允许不得转载. 在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究ale…
一.简单介绍 vgg和googlenet是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper.跟googlenet不同的是.vgg继承了lenet以及alexnet的一些框架.尤其是跟alexnet框架很像.vgg也是5个group的卷积.2层fc图像特征.一层fc分类特征,能够看做和alexnet一样总共8个part.依据前5个卷积group.每一个group中的不同配置,vgg论文中给出了A~E这五种配置.卷积层数从8到16递增. 从论文中能够看到从8到1…
深度学习 vs. 概率图模型 vs. 逻辑学 摘要:本文回顾过去50年人工智能(AI)领域形成的三大范式:逻辑学.概率方法和深度学习.文章按时间顺序展开,先回顾逻辑学和概率图方法,然后就人工智能和机器学习的未来走向做些预测. [编者按]在上个月发表博客文章<深度学习 vs. 机器学习 vs. 模式识别>之后,CMU博士.MIT博士后及vision.ai联合创始人Tomasz Malisiewicz这一次带领我们回顾50年来人工智能领域三大范式(逻辑学.概率方法和深度学习)的演变历程.通过本文我…