python+opencv 图像预处理】的更多相关文章

一 python 生成随机字符串序列+ 写入到图片上 from PIL import Image,ImageDraw,ImageFont import numpy as np import random import string import cv2 # 生成随机字符串 for i in range(1,10000): strnum = random.randint(2,10) ran_str = "".join(random.sample(string.ascii_letters…
像识别中,图像质量的好坏直接影响识别算法的设计与效果精度,那么除了能在算法上的优化外,预处理技术在整个项目中占有很重要的因素,然而人们往往忽略这一点. 图像预处理,将每一个文字图像分检出来交给识别模块识别,这一过程称为图像预处理. 图像预处理的主要目的是消除图像中无关的信息恢复有用的真实信息增强有关信息的可检测性和最大限度地简化数据从而改进特征抽取.图像分割.匹配和识别的可靠性.预处理过程一般有数字化.几何变换.归一化.*滑.复原和增强等步骤. 1.滤波:滤波(Wave filtering)是将…
强大的openCV能做什么我就不啰嗦,你能想到的一切图像+视频处理. 这里,我们说说openCV的图像相似度对比, 嗯,说好听一点那叫图像识别,但严格讲, 图像识别是在一个图片中进行类聚处理,比如图片人脸识别,眼部识别,但相识度对比是指两个或两个以上的图片进行对比相似度. 先来几张图片 (a.png)     (a_cp.png)      (t1.png)        (t2.png) 其中,a_cp.png 是复制a.png,也就是说是同一个图片, t1.png 与t2.png 看起来相同…
Alg1:图像数据格式之间相互转换.png to .jpg(其他的请举一反三) import cv2 import glob def png2jpg(): images = glob.glob('*.png') # 获取当前路径下的所有后缀名为.png的文件 count = 0 # 不断累加,提供输出图像名称 for i in images: print('Picture %d is Processing...' % count) I = cv2.imread(i) # 读取图像 cv2.imw…
读取并显示图像 如果读取图像首先要导入OpenCV包,方法为: import cv2 读取并显示图像 img = cv2.imread("C:\test1.jpg") OpenCV目前支持读取bmp.jpg.png.tiff等常用格式.更详细的请参考OpenCV的参考文档. 接着创建一个窗口 cv2.namedWindow("Image") 然后在窗口中显示图像 cv2.imshow("Image", img) 按键等待 waitKey() 这个…
cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) -> dst 参数说明: src - 原图 dst - 目标图像.当参数dsize不为0时,dst的大小为size:否则,它的大小需要根据src的大小,参数fx和fy决定.dst的类型(type)和src图像相同 dsize - 目标图像大小.当dsize为0时,它可以通过以下公式计算得出: 所以,参数dsize和参数(fx, fy)不能够同时为0 fx - 水平轴上的比例因子.…
博主最近在做一个基于OpenCV的火焰检测的项目,不仅可以检测图片中的火焰,还可以检测视频中的火焰,最后在视频检测的基础上推广到摄像头实时检测.在做这个项目的时候,博主参考了很多相关的文献,用了很多种不同的火焰判据,并将其进行不同组合,从而达到我们想要的检测效果.接下来的几篇博文将会详细介绍一些效果不错的火焰判据,在这之前,博主想先介绍一下在做项目的时候会常用到的一些图像预处理的方法. 常用的图像预处理是图像平滑和图像锐化.图像平滑一般用到的技术是均值滤波.中值滤波以及形态学处理,而图像锐化一般…
实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor…
写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 对给定的车牌进行车牌识别 实验代码 代码首先贴在这里,仅供参考 源代码 实验代码如下: import cv2 import numpy as np def lpr(filename): img = cv2.imread(filename) # 预处理,包括灰度处理,高斯…
学习如何使得图像符合预训练模型的需求,或者用其他数据集的图像来测试自己的模型. - 调整大小 - 缩放 - HWC和CHW,数据通道交换 - RGB和BGR,颜色通道的交换 - Caffe2的图像预处理 Ipython Notebook的教程在这里获取 在这一节中,我们将会展示如何从本地文件或网络链接载入一个图像,并能用于其他的教程和例子.当然,我们将继续深入多种预处理,这些预处理都是使用Caffe2时非常有必要的的. Mac OSx Prerequisites 首先,确保你有Python的这些…