在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x). 比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练…
大家好,我是二哥呀! 今天我来给大家讲一下,Java 不能实现真正泛型的原因是什么? 本文已同步至 GitHub <教妹学 Java>专栏,风趣幽默,通俗易懂,对 Java 初学者亲切友善,么么哒,内容包括 Java 语法.Java 集合框架.Java 并发编程.Java 虚拟机等核心知识点,欢迎 star.GitHub 开源地址:https://github.com/itwanger/jmx-java码云开源地址:https://gitee.com/itwanger/jmx-javaCode…
Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该如何调参,它常用的配置参数是怎么样的. Adam 的实现优化的过程和权重更新规则 Adam 的初始化偏差修正的推导 Adam 的扩展形式:AdaMax 1.什么是Adam优化算法? Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是…
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当为1时,称为随机梯度下降 一般我们选择64,128, 256等样本数目 import numpy as np import math def random_mini_batch(X, Y, mini_batch = 64, seed=0): np.random.seed(seed) m = X.sh…
转自:http://www.airghc.top/2016/11/10/Dection-DDos/ 最近研究了一篇论文,关于检测DDos攻击,使用了深度学习中 栈式自编码的算法,现在简要介绍一下内容论文下载 讨论班讲解pdf-by airghc ppt DDOS: Distributed Denial of Service(分布式拒绝服务)Purpose:disrupting transactions and access to databasesThe attack on the applic…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准的梯度下降算法. 基本思想:计算梯度的指数加权平均数并利用该梯度更新你的权重 假设图中是你的成本函数,你需要优化你的成本函数函数形象如图所示.其中红点所示就是你的最低点.使用常规的梯度下降方法会有摆动这种波动减缓了你训练模型的速度,不利于使用较大的学习率,如果学习率使用过大则可能会偏离函数的范围.为…
tensorflow集成和实现了各种机器学习基础的算法,可以直接调用. 代码集:https://github.com/ageron/handson-ml 监督学习 1)决策树(Decision Tree)和随机森林 决策树: 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案. 决策树(decision tree)是一个树结构(可以是二叉树或非二…
概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jimmy Ba 在提交到 2015 年 ICLR 论文(Adam: A Method for Stochastic Optimization)中提出的.该算法名为「Adam」,其并不是首字母缩写,也不是人名.它的名称来源于适应性矩估计(adaptive moment estimation) Adam(A…
1. 训练误差和泛化误差 机器学习模型在训练数据集和测试数据集上的表现.如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不⼀定更准确.这是为什么呢? 因为存在着训练误差和泛化误差: 训练误差:模型在训练数据集上表现出的误差. 泛化误差:模型在任意⼀个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似. 训练误差的期望小于或等于泛化误差.也就是说,⼀般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测…