TF 保存模型为 .pb格式】的更多相关文章

将网络模型,图加权值,保存为.pb文件  write.py # -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import shutil import os.path export_dir = '../model/' if…
本文承接上文 TensorFlow-slim 训练 CNN 分类模型(续),阐述通过 tf.contrib.slim 的函数 slim.learning.train 训练的模型,怎么通过人为的加入数据入口(即占位符)来克服无法用于图像推断的问题.要解决这个问题,最简单和最省时的方法是模仿.我们模仿的代码是 TensorFlow 实现的目标检测 API 中的文件 exporter.py,该文件的目的正是要将 TensorFlow-slim 训练的目标检测模型由 .ckpt 格式转化为.pb 格式,…
TensorFlow: How to freeze a model and serve it with a python API 参考:https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc 官方的源码:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/too…
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta…
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据.看完本文,相信你一定会有收获! 1 Tensorflow模型文件我们在checkpoint_dir目录下保存的文件结构如下: 1.1 meta文件MyModel.meta文件保存的是图结构,meta文件…
本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长时间保存一次,磁盘上最多保有几个模型(将前面的删除以保持固定个数),如下: 创建saver时指定参数: saver = tf.train.Saver(savable_variables, max_to_keep=n, keep_checkpoint_every_n_hours=m) 其中: sava…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions/41265035/tensorflow-why-there-are-3-files-after-saving-the-model 1. 保存模型 tensorflow中saver使用如下代码保存模型时(假设程序位于/home/xxx/test,模型保存在/home/xxx/test/model.下…
神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C:/Users/wk/Desktop/bky/dataSet/' log_dir = 'C:/Users/wk/Desktop/bky/log/' image,label = inputData.get_files(data_dir) image_batches,label_batches = inp…
转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PATH) # 保存网络中的参数, 速度快,占空间少 torch.save(net.state_dict(),PATH) #-------------------------------------------------- #针对上面一般的保存方法,加载的方法分别是: model_dict=torch.…