A-交叉熵的使用】的更多相关文章

Sigmoid函数 当神经元的输出接近 1时,曲线变得相当平,即σ′(z)的值会很小,进而也就使∂C/∂w和∂C/∂b会非常小.造成学习缓慢,下面有一个二次代价函数的cost变化图,epoch从15到50变化很小. 引入交叉熵代价函数 针对上述问题,希望对输出层选择一个不包含sigmoid的权值更新,使得 由链式法则,得到 由σ′(z) = σ(z)(1− σ(z))以及σ(z)=a,可以将上式转换成 对方程进行关于a的积分,可得 对样本进行平均之后就是下面的交叉熵代价函数 对比之前的输出层de…
最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max…
1.介绍: 当我们开发一个分类模型的时候,我们的目标是把输入映射到预测的概率上,当我们训练模型的时候就不停地调整参数使得我们预测出来的概率和真是的概率更加接近. 这篇文章我们关注在我们的模型假设这些类都是明确区分的,假设我们是开发一个二分类模型,那么对应于一个输入数据,我们将他标记为要么绝对是正,要么绝对是负.比如,我们输入的是一张图片,来判断这张图片是苹果还是梨子. 在训练过程中,我们可能输入了一张图片表示的是苹果,那么对于这张输入图片的真实概率分布为y=(苹果:1,梨子:0),但是我们的模型…
1交叉熵损失函数的由来1.1关于熵,交叉熵,相对熵(KL散度) 熵:香农信息量的期望.变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大.其计算公式如下: 其是一个期望的计算,也是记录随机事件结果的平均编码长度(关于编码:一个事件结果的出现概率越低,对其编码的bit长度就越长.即无法压缩的表达,代表了真正的信息量.) 熵与交叉熵之间的联系: 假设有两个分布p,q.其中p是真实概率分布,q是你以为(估计)的概率分布(可能不一致):你以 q 去编码,编码方案 log(1/qi)可能不是…
接上文:信息论随笔2: 交叉熵.相对熵,及上上文:信息论随笔 在读<数学之美>的时候,相关性那一节对TF-IDF模型有这样一句描述:"其实 IDF 的概念就是一个特定条件下.关键词的概率分布的交叉熵(Kullback-Leibler Divergence)": 当时尚不明白,等我看懂交叉熵与相对熵之后,再看TF-IDF,略有所获,本想与上一篇合写在一起的,但越写越多,于是单独成文: 文档的信息量 一篇文档由m个词组成 \( d = (w_{1}, w_{2}, w_{3},…
熵(entropy).KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)在机器学习的很多地方会用到.比如在决策树模型使用信息增益来选择一个最佳的划分,使得熵下降最大:深度学习模型最后一层使用 softmax 激活函数后,我们也常使用交叉熵来计算两个分布的“距离”.KL散度和交叉熵很像,都可以衡量两个分布之间的差异,相互之间可以转化. 1. 如何量化信息? 信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化.信…
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Mnist分类程序 import numpy as np from keras.datasets import mnist #将会从网络下载mnist数据集 from keras.utils import np_utils from keras.models import Sequential #序列模型 from k…
cross entropy 交叉熵的概念网上一大堆了,具体问度娘,这里主要介绍深度学习中,使用交叉熵作为类别分类. 1.二元交叉熵 binary_cross_entropy 我们通常见的交叉熵是二元交叉熵,因为在二分类中的交叉熵可以比较方便画出图像来,如下图,为“二元交叉熵”, 当我们的label标注结果0时,如下图右侧曲线,当预测结果为1时,返回的loss 无穷大,反之,loss 与 label标注结果一致都为0时, loss = 0.  当我们的label标注结果1时, 同理. 2.多元交叉…
二分类问题的交叉熵   在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数.对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集合{0, 1}. 我们假设某个样本点的真实标签为yt, 该样本点取yt=1的概率为yp, 则该样本点的损失函数为 \[-log(yt|yp)=-(ytlog(yp)+(1-yt)log(1-yp))\] 对于整个模型而言,其损失函数就是所有样本点的损失函数的平均值.注意到,对于该损失函数,其值应该为…
二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值,凡是大于0.5的样本被认为是正类,小于0.5则认为是负类 然而这样的做法并不容易推广到多分类问题.多分类问题神经网络最常用的方法是根据类别个数n,设置n个输出节点,这样每个样本,神经网络都会给出一个n维数组作为输出结果,然后我们运用激活函数如softmax,将输出转换为一种概率分布 其中的每一个概率…