1. 使用函数df(field,keyword) 和idf(field,keyword). http://118.85.207.11:11100/solr/mobile/select?q={!func}product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title,%E9%97%AE%E9%A2%98%29%29&fl=title,score,product%28idf%28title,%E9%97%AE%E9%A2%98%29,tf%28title…
将query改成filter,lucene中有个QueryWrapperFilter性能比较差,所以基本上都须要自己写filter.包含TermFilter,ExactPhraseFilter,ConjunctionFilter,DisjunctionFilter. 这几天验证下来,还是or改善最明显,4个termfilter,4508个返回结果,在我本机上性能提高1/3.ExactPhraseFilter也有小幅提升(5%-10%). 最令人不解的是and,原来以为跟结果数和子查询数相关,但几…
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
默认的similarity是基于TF/IDF 模块. 该 similarity有以下配置选项: discount_overlaps –确定是否重叠的标识(标记位置增量为0)都将被忽略在正常计算的时候.默认情况下是:true,这意味着重叠标记在计算时不计数.…
BM25算法的全称是 Okapi BM25,是一种二元独立模型的扩展,也可以用来做搜索的相关度排序. Sphinx的默认相关性算法就是用的BM25.Lucene4.0之后也可以选择使用BM25算法(默认是TF-IDF).如果你使用的solr,只需要修改schema.xml,加入下面这行就可以 <similarity class="solr.BM25Similarity"/> BM25也是基于词频的算分公式,分词对它的算分结果也很重要 IDF公式 f(qi,D):就是词频 |…
Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核心规则,第二个的规则其实有缺陷的,他单纯地认为文本频率小的…
1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类.TF词频(Term Frequency)指的是某一个给定的词语在该文件中出现的次数.IDF反文档频率(Inverse Document Frequency)的主要思想是:如果包含词条的文档越少,IDF越大,则说明词条具有很好的类别区分能力. 1.1TF Term frequenc…
最近想学习下Lucene ,以前运行的Demo就感觉很神奇,什么原理呢,尤其是查找相似度最高的.最优的结果.索性就直接跳到这个问题看,很多资料都提到了VSM(Vector Space Model)即向量空间模型,根据这个模型可以对搜索的结果进行最优化的筛选,目前还不知道如何证明,只能凭借想象应该是这个样子的. 1.看一下TF/IDF 我们先来看下一个叫TF/IDF的概念,一般它用来作为一个搜索关键字在文档或整个查询词组的权重的计算方式.前几天看了吴军老师的数学之美系列文章,这个TF/IDF可以追…
转自: http://lutaf.com/210.htm Lucene在进行关键词查询的时候,默认用TF-IDF算法来计算关键词和文档的相关性,用这个数据排序 TF:词频,IDF:逆向文档频率,TF-IDF是一种统计方法,或者被称为向量空间模型,名字听起来很复杂,但是它其实只包含了两个简单规则 某个词或短语在一篇文章中出现的次数越多,越相关 整个文档集合中包含某个词的文档数量越少,这个词越重要 所以一个term的TF-IDF相关性等于 TF * IDF 这两个规则非常简单,这就是TF-IDF的核…
TF/IDF(term frequency/inverse document frequency) 的概念被公认为信息检索中最重要的发明. 一. TF/IDF描述单个term与特定document的相关性 TF(Term Frequency): 表示一个term与某个document的相关性.公式为: 这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主…
FROM:http://blog.csdn.net/pennyliang/article/details/1231028 我们已经谈过了如何自动下载网页.如何建立索引.如何衡量网页的质量(Page Rank).我们今天谈谈如何确定一个网页和某个查询的相关性.了解了这四个方面,一个有一定编程基础的读者应该可以写一个简单的搜索引擎了,比如为您所在的学校或院系建立一个小的搜索引擎.] 我们还是看上回的例子,查找关于“原子能的应用”的网页.我们第一步是在索引中找到包含这三个词的网页(详见关于布尔运算的系…
https://blog.csdn.net/class_brick/article/details/79135909 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜寻引擎应用,…
相关度评分 TF&IDF算法 Elasticsearch的相关度评分(relevance score)算法采用的是term frequency/inverse document frequency算法,简称为TF/IDF算法. 算法介绍: relevance score算法:简单来说就是,就是计算出一个索引中的文本,与搜索文本,它们之间的关联匹配程度. TF/IDF算法:分为两个部分,IF 和IDF Term Frequency(TF): 搜索文本中的各个词条在field文本中出现了多少次,出现…
    一.TF/IDF描述单个term与特定document的相关性TF(Term Frequency): 表示一个term与某个document的相关性. 公式为这个term在document中出现的次数除以该document中所有term出现的总次数. IDF(Inverse Document Frequency)表示一个term表示document的主题的权重大小.主要是通过包含了该term的docuement的数量和docuement set的总数量来比较的.出现的次数越多,权重越小.…
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我…
tf–idf算法解释 tf–idf, 是term frequency–inverse document frequency的缩写,它通常用来衡量一个词对在一个语料库中对它所在的文档有多重要,常用在信息检索和文本挖掘中. 一个很自然的想法是在一篇文档中词频越高的词对这篇文档越重要,但同时如果这个词又在非常多的文档中出现的话可能就是很普通的词,没有多少信息,对所在文档贡献不大,例如‘的’这种停用词.所以要综合一个词在所在文档出现次数以及有多少篇文档包含这个词,如果一个词在所在文档出现次数很多同时整个…
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适…
relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度 Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法 Term frequency(TF):搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关 Inverse document frequency(IDF):搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的…
在文本挖掘预处理之向量化与Hash Trick中我们讲到在文本挖掘的预处理中,向量化之后一般都伴随着TF-IDF的处理,那么什么是TF-IDF,为什么一般我们要加这一步预处理呢?这里就对TF-IDF的原理做一个总结. 1. 文本向量化特征的不足 在将文本分词并向量化后,我们可以得到词汇表中每个词在各个文本中形成的词向量,比如在文本挖掘预处理之向量化与Hash Trick这篇文章中,我们将下面4个短文本做了词频统计: corpus=["I come to China to travel"…
主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean model 进行初步的筛选,boolean model类似and这种逻辑操作符,先过滤出包含指定term的doc.must/must not/should(过滤.包含.不包含 .可能包含)这几种情况,这一步不会对各个doc进行打分,只分过滤,为下一步的IF/IDF算法筛选数据.     二.TF/IDF…
主要知识点: TF/IDF算法介绍 查看es计算_source的过程及各词条的分数 查看一个document是如何被匹配到的         一.算法介绍 relevance score算法,简单来说,就是计算出,一个索引中的文本,与搜索文本,他们之间的关联匹配程度.Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法     1.Term frequency 搜索文本中的各个词条在field文本中出现…
tf–idf算法python代码实现 这是我写的一个tf-idf的简单实现的代码,我们知道tfidf=tf*idf,所以可以分别计算tf和idf值在相乘,首先我们创建一个简单的语料库,作为例子,只有四句话,每句表示一个文档 copus=['我正在学习计算机','它正在吃饭','我的书还在你那儿','今天不上班'] 由于中文需要分词,jieba分词是python里面比较好用的分词工具,所以选用jieba分词,文末是jieba的链接.首先对文档进行分词: import jieba copus=['我…
一.基于词项与全文的搜索 1.词项 Term(词项)是表达语意的最小单位,搜索和利用统计语言模型进行自然语言处理都需要处理Term. Term的使用说明: 1)Term Level Query:Term Query.Range Query.Exists Query.Prefix Query.Wildcard Query: 2)在ES中,对于Term查询的输入是不做分词处理的,会将输入作为一个整体,在倒排索引中查找准确的词项,并且使用相关度算分公式为每个包含该词项的文档进行相关度算分: 3)通过C…
在相似文本的推荐中,可以用TF-IDF来衡量文章之间的相似性. 一.TF(Term Frequency) TF的含义很明显,就是词出现的频率. 公式: 在算文本相似性的时候,可以采用这个思路,如果两篇文章高频词很相似,那么就可以认定两片文章很相似. 二.IDF(Inverse Document Frequency) IDF为逆文档频率. 公式: 一个词越在语料库出现的次数越多,则权重应该越不重要:反之越少则应该越重要. 比如,如果要检索两个文档的相似度,通过统计权重大的词来进行匹配更为合理,如果…
决策树入门 决策树是分类算法中最重要的算法,重点 决策树算法在电信营业中怎么工作? 这个工人也是流失的,在外网转移比处虽然没有特征来判断,但是在此节点处流失率有三个分支概率更大 为什么叫决策树? 因为树的叶子节点是我们最终预判的结果.决策树如何来? 根据训练样本建立.问题1:为什么费用变换率放第一个? 根据特征建决策树,会有n棵树,找出最优树.问题2:当我们特征是连续值的时候,到底从哪里开始切分? 连续值要改为离散的.问题3:决策树能不能做回归 决策树例子: 不同的决策树对我们判定的效率,速度有…
RSA算法原理(一)  声明: 本文转自 -- 作者: 阮一峰 (http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html) 如果你问我,哪一种算法最重要? 我可能会回答"公钥加密算法". 因为它是计算机通信安全的基石,保证了加密数据不会被破解.你可以想象一下,信用卡交易被破解的后果. 进入正题之前,我先简单介绍一下,什么是"公钥加密算法". 一.一点历史 1976年以前,所有的加密方法都是…
Contents    1. CART算法的认识    2. CART算法的原理    3. CART算法的实现 1. CART算法的认识 Classification And Regression Tree,即分类回归树算法,简称CART算法,它是决策树的一种实现,通 常决策树主要有三种实现,分别是ID3算法,CART算法和C4.5算法. CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支, 因此CART算法生成的决策树是结构简洁的二叉树.由于…
Information based:它与Diveragence from randomness模型非常相似.与DFR相似度模型类似,据说该模型也适用于自然语言类的文本.…
地址:http://terrier.org/docs/v3.5/dfr_description.html The Divergence from Randomness (DFR) paradigm is a generalisation of one of the very first models of Information Retrieval, Harter's 2-Poisson indexing-model [1]. The 2-Poisson model is based on th…
该Similarity 实现了  divergence from randomness (偏离随机性)框架,这是一种基于同名概率模型的相似度模型. 该 similarity有以下配置选项: basic_model – 可能的值: be, d, g, if, in, ine 和 p. after_effect – 可能的值: no, b 和 l. normalization – 可能的值: no, h1, h2, h3 和 z.所有选项除了第一个,都需要一个标准值.…