L2 Regularization for Neural Nerworks】的更多相关文章

L2 Regularization是解决Variance(Overfitting)问题的方案之一,在Neural Network领域里通常还有Drop Out, L1 Regularization等.无论哪种方法,其Core Idea是让模型变得更简单,从而平衡对training set完美拟合.以及获得最大的Generalization即归纳能力,从而对未见的数据有最准确的预测. L2 Regularization改变了Cost function,如果在正则化之前的Cost function为…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
About this Course This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good res…
Machine Learning Algorithms Linear Regression and Gradient Descent Local Weighted Regression Algorithm Logistic Regression Generative Model vs Discriminative Model Naive Bayes and Laplace Smoothing k-Nearest Neighbors Algorithm Decision Tree Algorith…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
Train/Dev/Test set Bias/Variance Regularization  有下面一些regularization的方法. L2 regularation drop out data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像) L2 regularization: Forbenius Norm. 上面这张图提到了weight decay 的概念 Weigh…
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 examples, how would you split the train/dev/test set? (如果你有 10,000,000 个样本,你会如何划分训练/开发/测试集?) [ ]98% train . 1% dev . 1% test(训练集占 98% , 开发集占 1% , 测试集占 1%) 答案…