对话Facebook人工智能实验室主任.深度学习专家Yann LeCun Yann LeCun(燕乐存),Facebook人工智能实验室主任,NYU数据科学中心创始人,计算机科学.神经科学.电子电气科学教授.他1983年在ESIEE获得电气工程学位,1987年在UPMC获得计算机博士学位.在多伦多大学做了一段时间博士后,于1988年加入位于新泽西州的AT&T贝尔实验室.1996年他成为图像处理研究部的主任,2003年,在普林斯顿NEC研究院经历短暂的Fellow生活以后,加入NYU.2013年,…
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NLP自然语言,广告算法,预测算法,数据挖掘,无人驾驶.医疗咨询机器人.聊天机器人,这些都属于人工智能的范畴. 人工智能现在用到的基础算法是深度学习里面的神经网络算法,具体应用场景有不同的专业算法实际上很多细分领域的,差别还是很多的机器人的对运动控制算法,图像识别算法要求比较高像alphaGo,推荐算法…
人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍 ====================================== 大家现在对人工智能的期望太高了,2017是人工智能投资资本热的一年,但实际突破还是有限,估计过几年又会死掉一大批人工智能的创业公司,大家变得回归理性,调整到正常的认知水平上. 这种革命性技术不可能有资本追求快速暴利那么快见效的,几年内都很难有重大突破. 2020年再来看估计能有理性后的…
Facebook 人工智能研究院(FAIR)首席科学家 Devi Parikh 是 2017 年 IJCAI 计算机和思想奖获得者(IJCAI 两个最重要的奖项之一,被誉为国际人工智能领域的「菲尔兹奖」),并位列福布斯 2017 年「20 位引领 AI 研究的女性」榜单.她主要从事计算机视觉和模式识别研究,具体研究领域包括计算机视觉.语言与视觉.通识推理.人工智能.人机合作.语境推理以及模式识别. 2008 年到现在,Devi Parikh 先后在计算机视觉三大顶级会议(ICCV.CVPR.EC…
原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基因组学等.深度学习可以发现大数据中的复杂结构.它是利用BP算法来完毕这个发现过程的.BP算法可以指导机器怎样从前一层获取误差而改变本层的内部參数,这些内部參数可以用于计算表示.深度卷积网络在处理图像.视频.语音和音频方面带来了突破,而递归网络在处理序列数据.比方文本和语音方面表现出了闪亮的一面. 机…
This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058&m=4077873754872790&cu=5070353058 深度学习全网最全学习资料汇总之模型介绍篇 雷锋网 作者: 三川 2017-02-21 16:38:00 查看源网址 阅读数:4 本文旨在加速深度学习新手入门,介绍 CNN.DBN.RNN.RNTN.自动编码器.GAN 等开发者最…
人工智能之父麦卡锡给出的定义 构建智能机器,特别是智能计算机程序的科学和工程. 人工智能是一种让计算机程序能够"智能地"思考的方式 思考的模式类似于人类. 什么是智能? 智能的英语是 Intelligence 推理,知识,规划,学习,交流,感知,移动和操作物体. 智能 不等于 智力 (IQ:智商 比较类似计算机的计算能力) 如何算有智能? 可以根据环境变化而做出相应变化的能力. 具有"存活" 这最基本的动因 自主意识,自我意识等等. 抢小孩子西瓜吃,小孩子护住西瓜就…
2017年3月22日下午,Facebook人工智能研究院院长.纽约大学终身教授Yann LeCun在清华大学大礼堂为校内师生以及慕名而来的业内人士呈现了一场主题为<深度学习与人工智能的未来(Deep Learning and the Future of AI)>的精彩公开课. 随着AlphaGo事件的不断发酵,神经网络成为时下人工智能产学领域万众瞩目的研究焦点,也成为普罗大众的热门话题.事实上,神经网络作为一种算法模型,很早就已经被广泛关注和研究,也曾长时间内陷入发展突破的低潮期.不过,在以G…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…