bzoj2326】的更多相关文章

考虑暴力,那么有f(n)=(f(n-1)*10digit+n)%m.注意到每次转移是类似的,考虑矩阵快速幂.首先对于位数不同的数字分开处理,显然这只有log种.然后就得到了f(n)=a·f(n-1)+b形式的递推式,可以矩阵快速幂.注意这里的b虽然是变化的,但每次变化量相同,给矩阵加一维就好了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<…
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Status][Discuss] Description Input Output Sample Input Sample Output HINT Source 题解: 矩乘快速幂,构造矩阵: 其中k为位数,所以分段进行快速幂: 1~9:10~99:100~999:-. 开始4A6W,然后加了快速乘AC了,但…
矩阵快速幂,分1-9,10-99...看黄学长的代码理解...然而他直接把答案保存在最后一行(没有说明...好吧应该是我智障这都不知道... #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define rep(i,n) for(int i=1;i<=n;i++) #define clr(x,c) memset…
首先不难得出递推式f[i]=(f[i-1]*10^k+i) mod m;f[i]表示接到第i个数时的余数,k表示i的位数不难想到先按位数穷举位数,然后对于确定的位数,构造矩阵解决易得出:f[i]    10^k  1   1      f[i-1]  i   =   0    1   1   *    i-1 1       0    0   1         1矩阵乘法优化的特点就是有一维特别的大,且这一阶段的值只和上一阶段有关 ..,..] of int64; f,p:..] of int…
Description Input Output Sample Input Sample Output HINT Source Solution 递推式长这样:$f[n]=f[n-1]*10^k+n$ 对于每一段位数个数相同的$n$(如$10\sim99,100\sim999,23333\sim66666,1018701389\sim2147483647$),$k$是个定值 然后就可以开心地分段矩阵乘法了,剩下的自己推吧 #include <bits/stdc++.h> using names…
题目大意:输入n(n<=10^18)和m,将1~n的整数连起来模m输出,比如n=13则输出12345678910111213模m的数. 设f[i]为1~i整数连起来模m的数,i的位数为k,则有f[i]=(f[i-1]*10^k+i)mod m.可以发现f[i-1]和10^k都是会变化的,不能直接矩乘,这就尴尬了>_<.但是仔细想想(跑去问CZL),其实可以分段来矩乘,把k一样的数矩乘(1..9一样,10..99一样,100..999一样)就行了,这样就变成了ax+by+c的形式,b=1,…
题目描述 题解 矩阵乘法 考虑把相同位数的数放到一起处理: 设有$k$位的数为$[l,r]$,那么枚举从大到小的第$i$个数(即枚举$r-i+1$),考虑其对$Concatenate(l..r)$的贡献: $v_i=(r-i+1)10^{k(i-1)}$ 所以要求的就是: $\sum\limits_{i=1}^{r-l+1}(r-i+1)10^{k(i-1)}\mod m\ =\ \sum\limits_{i=0}^{r-l}(r-i)10^{ki}\mod m$ 这个式子可以使用矩阵乘法解决.…
数学作业 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 输入文件只有一行为用空格隔开的两个正整数N和M. Output 输出仅包含一个非负整数,表示Concatenate(1~N) MOD M的值. Sample Input 12345678910 1000000000 Sample Output 345678910 HINT 1<=N<=10^8 , 1<=M<…
http://hzwer.com/2831.html #include<cstdio> #include<iostream> #include<vector> using namespace std; typedef long long ll; typedef vector<ll> vec; typedef vector<vec> mat; ll n,MOD; mat operator * (const mat &a,const mat…
题解 我们设f[i]表示前i个数模M意义下的答案 则f[i] = f[i - 1] * 100...0 + i[i是几位就有几个0] 可以写出矩阵递推式: 之后按位数分组矩乘就好了 #include<iostream> #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define LL long long int #define REP(i,n) fo…
想法 最初的想法就是记录当前 \(%m\) 值为cur,到下一个数时 \(cur=cur \times 10^x + i\) n这么大,那就矩阵乘法呗. 矩阵乘法使用的要点就是有一个转移矩阵会不停的用到. 那么这道题中,1~n中所有位数相同的数转移矩阵都相同. \[ \begin{bmatrix} ans & i &1 \end{bmatrix} \begin{bmatrix} 10^x & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 &…
题意: 定义函数Concatenate (1 ..N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数,如concatenate(1..5)是12345,求concatenate(1...n)%m的值 思路: 矩阵快速幂,公式为 $$\left[\begin{matrix}f(n)\\n\\1\end{matrix}\right]=\left[\begin{matrix}10^k&1&1\\0&1&1\\0&0&1\end{matrix}\righ…
快考试了,把我以前写过的题回顾一下.Noip2007 树网的核:floyd,推出性质,暴力.Noip2008 笨小猴:模拟Noip2008 火柴棒等式:枚举Noip2008 传纸条:棋盘dpNoip2008 双栈排序:将复杂条件转化为简单约束,二分图染色判断可行性,模拟.Noi2010 能量采集:常见套路,求:ΣΣgcd(i,j),设t = gcd(i,j),能算出gcd=t的点对有(n/t) * (m/t)个,然后利用容斥原理减去2t,3t,……,kt的,倒序枚举.Noip2009 潜伏者:模…
counter: 664BZOJ1601 BZOJ1003 BZOJ1002 BZOJ1192 BZOJ1303 BZOJ1270 BZOJ3039 BZOJ1191 BZOJ1059 BZOJ1202 BZOJ1051 BZOJ1001 BZOJ1588 BZOJ1208 BZOJ1491 BZOJ1084 BZOJ1295 BZOJ3109 BZOJ1085 BZOJ1041 BZOJ1087 BZOJ3038 BZOJ1821 BZOJ1076 BZOJ2321 BZOJ1934 BZOJ…
沿着黄学长的步伐~~ 红色为已刷,黑色为未刷,看我多久能搞完吧... Update on 7.26 :之前咕了好久...(足见博主的flag是多么emmm......)这几天开始会抽时间刷的,每天几道就行了. BZOJ1601 BZOJ1003 BZOJ1002 BZOJ1192 BZOJ1303 BZOJ1270 BZOJ3039 BZOJ1191 BZOJ1059 BZOJ1202 BZOJ1051 BZOJ1001 BZOJ1588 BZOJ1208 BZOJ1491 BZOJ1084 B…