ZOJ3329之经典概率DP】的更多相关文章

One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3329 题意:现在有三个骰子,分别有k1,k2和k3面,面上的点就是1~ki.每次扔骰子,如果这三个骰子的值分别对应为a,b,c,那么将值初始化为0,否则就将三个骰子的点值和相加.求大于等于n的扔骰子次数期望. 思路: 这道题目主要在于推公式,看着别人的题解想了好久. 先设$E(i)$为此时和为i时还需要的期望,易得(1):$E(i)=\sum (E(i+k)P(k))+E…
Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 2745   Accepted: 1345 Case Time Limit: 2000MS   Special Judge Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material s…
起因:在一场训练赛上.有这么一题没做出来. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6829 题目大意:有三个人,他们分别有\(X,Y,Z\)块钱(\(1<=X,Y,Z<=1e6\)),钱数最多的(如果不止一个那么随机等概率的选一个)随机等可能的选另一个人送他一块钱.直到三个人钱数相同为止.输出送钱轮数的期望,如果根本停不下来,输出-1. 根据题目的意思,其实就是每次向包里随机加入一枚钱币,直到包里某种钱币数量达到 100.本题的核心是如何…
概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/2012/10/02/2710606.html *************************************************************** 概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. 首先…
传送门 概率dp经典题目. 直接f[i][j][k]f[i][j][k]f[i][j][k]表示当前是第i次挑战,已经胜利了j次,目前的背包剩余空间是k. 然后用前面的转移后面的就行了. 注意第三维可能是负数,需要用一些技巧转化一下(比如把整个数组的下标向右平移) 代码: #include<bits/stdc++.h> #define N 205 using namespace std; int n,l,K,a[N],tmp; double p[N],f[2][205][605],ans; i…
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/2. 而如果没有钉子,那么掉到(i+2,j+1)(i+2,j+1)(i+2,j+1)的概率是1. 这样转移就行了. 另外注意读入字符要用cin. 代码: #include<bits/stdc++.h> #define ll long long using namespace std; ll n,m…
数学期望 P=Σ每一种状态*对应的概率. 因为不可能枚举完所有的状态,有时也不可能枚举完,比如抛硬币,有可能一直是正面,etc.在没有接触数学期望时看到数学期望的题可能会觉得很阔怕(因为我高中就是这么认为的,对不起何老板了QwQ),避之不及. 但是现在发现大多数题就是手动找公式或者DP推出即可,只要处理好边界,然后写好方程,代码超级简短.与常规的求解不同,数学期望经常逆向推出. 比如常规的dp[x]可能表示到了x这一状态有多少,最后答案是dp[n].而数学期望的dp[x]一般表示到了x这一状态还…
bzoj1076 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提宝物集合Si…
注意:在概率DP中求期望要逆着推,求概率要正着推 概率DP求期望: 链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 dp[ i ]表示从i点走到n点的期望,在正常情况下i点可以到走到i+1,i+2,i+3,i+4,i+5,i+6 点且每个点的概率都为1/6 所以dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6  + 1(步数加一) 而对于有跳跃的点直接为dp[a]=dp[b];…