本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出 第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征.然后进行maxpooling.第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征.然后进行max pooling.卷积核的个数是我们自己设定,可以增加卷积核数目提高…
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https://cran.r-project.org/web/packages/softmaxreg/index.html ------------------------------------------------------------------ 一.介绍 Softmax Regression模型本质还是…
mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.train)和10000行的测试数据集(mnist.test).每一个MNIST数据单元有两部分组成:一张包含手写数字的图片和一个对应的标签.我们把这些图片设为“xs”,把这些标签设为“ys”.训练数据集和测试数据集都包含xs和ys,比如训练数据集的图片是 mnist.train.images ,训练…
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input', 'Model', 'Sequential', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__ver…
前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出最终运行代码.如果对Tensorflow的一些基本操作不熟悉的话,推荐先看下极客学院的这篇文章再回来看本文. 数据集 数据集是MNIST,一个入门级的计算机视觉数据集,它包含各种手写数字图片: 每张图片包含28X28个像素点,标签即为图片中的数字. 问题 使用MNIST数据集进行训练,识别图片中的手…
目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 1.1 MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 ​ ​ 本文使用第一种方法获取数据集,并使用Dataloader进行按批装载.如果使用程序下载失败,请将其…
摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别.自动驾驶.物体检测等领域,CNN被广泛使用,并都取得了最优性能.对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个…
一.MNSIT数据处理 MNSIT是一个非常有名的手写体数字识别数据集.包含60000张训练图片,10000张测试图片.每张图片是28X28的数字. TonserFlow提供了一个类来处理 MNSIT数据.这个类会自动下载并转化数据结构. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist_data = input_data.read_data_sets("mnist_s…
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积层2 (5)搭建全连接层3 (6)搭建输出层 2.2 训练和评估模型 三.结果 3.1 训练过程 3.2 测试过程 四.讨论与结论 一.背景介绍 1.1 卷积神经网络 近年来,深度学习的概念非常火热.深度学习的概念最早由Hinton等人在2006年提出.基于深度置信网络(DBN),提出非监督贪心逐层…
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点意思的项目. 项目的github地址:github 喜欢的话就给个Star吧. 想要她认得我,就需要给她一些我的照片,让她记住我的人脸特征,为了让她区分我和其他人,还需要给她一些其他人的照片做参照,所以就需要两组数据集来让她学习,如果想让她多认识几个人,那多给她几组图片集学习就可以了.下面就开始让我…