首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
3 个用于数据科学的顶级 Python 库
】的更多相关文章
3 个用于数据科学的顶级 Python 库
使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机器学习专家来说,Python 通常是最好的选择(比如,Andrey Bulezyuk 使用 Python 语言创造了一个优秀的机器学习应用程序). 由于 Python 的广泛使用,因此它拥有大量的库,使得数据科学家能够很容易地完成复杂的任务,而且不会遇到许多编码困难.下面列出 3 个用于数据科学的顶…
用于数据科学的顶级 C/C++ 机器学习库整理
用于数据科学的顶级 C/C++ 机器学习库整理 介绍和动机--为什么选择 C++ C++ 非常适合 动态负载平衡. 自适应缓存以及开发大型大数据框架 和库.Google 的MapReduce.MongoDB以及 下面列出 的大多数 深度学习库都是使用 C++ 实现的. Scylla 以其 超低延迟 和 极高 吞吐量而闻名,它 使用 C++ 进行编码,作为 Apache Cassandra 和 Amazon DynamoDB的替代品. 凭借 C++ 作为编程语言的 一些独特优势(包括内存管理. 性…
顶级Python库
绝不能错过的24个顶级Python库 Python有以下三个特点: · 易用性和灵活性 · 全行业高接受度:Python无疑是业界最流行的数据科学语言 · 用于数据科学的Python库的数量优势 事实上,由于Python库种类很多,要跟上其发展速度非常困难.因此,本文介绍了24种涵盖端到端数据科学生命周期的Python库. 文中提及了用于数据清理.数据操作.可视化.构建模型甚至模型部署(以及其他用途)的库.这是一个相当全面的列表,有助于你使用Python开启数据科学之旅. 用于不同数据科学任务的…
一文总结数据科学家常用的Python库(下)
用于建模的Python库 我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗? 让我们通过这三个Python库探索模型构建. Scikit-learn 就像用于数据操作的Pandas和用于可视化的matplotlib一样,scikit-learn是构建模型的Python库领导者.没有什么比得上它了. 事实上,scikit-learn建立在NumPy,SciPy和matplotlib之上.它是开源的,每个人都可以访问,并且可以在各种环境中重用.…
一文总结数据科学家常用的Python库(上)
概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库?让我们知道! 介绍 我是Python语言的忠实粉丝,它是我在数据科学方面学到的第一门编程语言.Python有三个特点: 它的易用性和灵活性 全行业的接受度:它是业内最流行的数据科学语言 用于数据科学的庞大数量的Python库 事实上,有如此多的Python库,要跟上它们的发展速度可能会变得非常困难…
总结数据科学家常用的Python库
概述 这篇文章中,我们挑选了24个用于数据科学的Python库. 这些库有着不同的数据科学功能,例如数据收集,数据清理,数据探索,建模等,接下来我们会分类介绍. 您觉得我们还应该包含哪些Python库?让我们知道! 介绍 我是Python语言的忠实粉丝,它是我在数据科学方面学到的第一门编程语言.Python有三个特点: 它的易用性和灵活性 全行业的接受度:它是业内最流行的数据科学语言 用于数据科学的庞大数量的Python库 事实上,有如此多的Python库,要跟上它们的发展速度可能会变得非常困难…
程序员用于机器学习数据科学的3个顶级 Python 库
NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可证的许可下开源的,它是在科学计算中执行任务的基础 Python 库.SciPy 是一个更大的基于 Python 生态系统的开源工具,而 NumPy 是 SciPy 非常重要的一部分. NumPy 为 Python 提供了大量数据结构,从而能够轻松地执行多维数组和矩阵运算.除了用于求解线性代数方程和其…
七个用于数据科学(data science)的命令行工具
七个用于数据科学(data science)的命令行工具 数据科学是OSEMN(和 awesome 相同发音),它包括获取(Obtaining).整理(Scrubbing).探索(Exploring).建模(Modeling)和翻译(iNterpreting)数据.作为一名数据科学家,我用命令行的时间非常长,尤其是要获取.整理和探索数据的时候.而且我也不是唯一一个这样做的人.最近,Greg Reda介绍了可用于数据科学的经典命令行工具.在这之前,Seth Brown介绍了如何在Unix下进行探索…
探讨2018年最受欢迎的15顶级Python库!
近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学.数据可视化.深度学习和机器学习.如果本文有哪些遗漏,你可以在评论区补充. 图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库.形状大小与贡献者数量成正比 以下为 2018 年排名前 15 的 Python 库(数据截止 2018 年 12 月 16 日): 1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765) “Tensor…
深入对比数据科学工具箱:Python和R之争
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…