【动手学pytorch】线性回归】的更多相关文章

代码及解释 错题整理…
一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉熵损失函数 在估计损失时,尤其是概率上的损失,交叉熵损失函数更加常用.下面是交叉熵 当我们预测单个物体(即每个样本只有1个标签),y(i)为我们构造的向量,其分量不是0就是1,并且只有一个1(第y(i)个数为1).于是.交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确.遇…
一.Tensor a)       张量是torch的基础数据类型 b)       张量的核心是坐标的改变不会改变自身性质. c)        0阶张量为标量(只有数值,没有方向的量),因为它不随坐标的变化发生改变 d)       一阶张量为矢量(即向量),他也不随坐标变化而发生变化 e)       二阶张量为矩阵 f)         生成tensor时的通用参数                      i.            转换数值类型: 常见生成tensor的参数:dtyp…
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-…
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中可以大获全胜?人工智终将会取代人类智慧吗? <神经网络与深度学习>是一本介绍神经网络和深度学习算法基本原理及相关实例的书籍,它不是教科书,作者已尽量把公式减少到最少,以适应绝大部分人的阅读基础和知识储备.<神经网络与深度学习>涵盖了神经网络的研究历史.基础原理.深度学习中的自编码器.深…
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3) print(x) 输出 tensor([[ 2.0909e+21, 3.0638e-41, -2.4612e-30], [ 4.5650e-41, 3.0638e-41, 1.7753e+28], [ 4.4339e+27, 1.3848e-14, 6.8801e+16], [ 1.8370e+…
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活环境是能够运行代码的前提. 解决方法: 在d2l-zh目录运行conda activate gluon命令,然后再打开jupyter notebook,则可以正常导入mxnet模块. 参考 1. d2l-zh-doc; 2. [动手学深度学习]中Jupyter notebook中 import mx…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 什么是eager模式 2 TF1.0 vs TF2.0 3 获取导数/梯度 4 获取高阶导数 之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型.这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度. 1 什么是…
导入同样导入之前的包或者模块 生成数据集 通过pytorch读取数据 定义模型 初始化模型 定义损失函数 定义优化算法 训练模型 小结 本节利用pytorch中的模块,生成一个更加简洁的代码来实现同样的功能 导入同样导入之前的包或者模块 %matplotlib inline import torch from IPython import display from matplotlib import pyplot as plt import numpy as np import random 生…
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据集 读取数据 初始化模型参数 定义模型 定义损失函数 定义优化算法 训练模型 生成数据集 我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别.设训练数据集样本数为1000,输入个数(特征数)为2.给定随机生成的批量样本特征 \(\boldsymbol{X} \…