拉格朗日乘子法和KKT条件】的更多相关文章

解密SVM系列(一):关于拉格朗日乘子法和KKT条件 标签: svm算法支持向量机 2015-08-17 18:53 1214人阅读 评论(0) 收藏 举报  分类: 模式识别&机器学习(42)  版权声明:本文为博主原创文章,未经博主允许不得转载.   原文链接 :http://blog.csdn.net/on2way/article/details/47729419 写在之前 支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造…
    这篇博文中直观上讲解了拉格朗日乘子法和 KKT 条件,对偶问题等内容.     首先从无约束的优化问题讲起,一般就是要使一个表达式取到最小值: \[min \quad f(x)\]     如果问题是 \(max \quad f(x)\) 也可以通过取反转化为求最小值 \(min \quad-f(x)\),这个是一个习惯.对于这类问题在高中就学过怎么做.只要对它的每一个变量求导,然后让偏导为零,解方程组就行了. 极值点示意图     所以在极值点处一定满足 \(\frac {df(x)}…
拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 对于无约束最优化问题,有很多经典的求解方法,参见无约束最优化方法. 拉格朗日乘子法 先来看拉格朗日乘子法是什么,再讲为什么. $\min\;f(x)\\s.t.\;h_{i}(x)=0\;\;\;\;i=1,2...,n$ 这…
拉格朗日乘子法是一种寻找多元函数在一组约束下的极值方法,通过引入拉格朗日乘子,可将有m个变量和n个约束条件的最优化问题转化为具有m+n个变量的无约束优化问题.在介绍拉格朗日乘子法之前,先简要的介绍一些前置知识,然后就拉格朗日乘子法谈一下自己的理解. 一 前置知识 1.梯度  梯度是一个与方向导数有关的概念,它是一个向量.在二元函数的情形,设函数f(x,y)在平面区域D内具有一阶连续偏导,则对于每一点P(x0,y0)∈D,都可以定义出一个向量:fx(x0,y0)i+fy(x0,y0)j ,称该向量…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
朗日乘子法(Lagrange Multiplier)和KKT(Karush-Kuhn-Tucker)条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件.前提是:只有当目标函数为凸函数时,使用这两种方法才保证求得的是最优解. 1. 拉格朗日乘子法: 这个问题转换为 其中,称为拉格朗日乘子. wikipedia上对拉格朗日乘子法的合理性解释: 现有一个二维的优化问题: 我们可以画图来辅助思考. 绿线标出的是约束的点的轨迹.蓝线是的等高线.箭头表示斜率,和…
接下来准备写支持向量机,然而支持向量机和其他算法相比牵涉较多的数学知识,其中首当其冲的就是标题中的拉格朗日乘子法.KKT条件和对偶问题,所以本篇先作个铺垫. 大部分机器学习算法最后都可归结为最优化问题.对于无约束优化问题: \(\min\limits_\boldsymbol{x} f(\boldsymbol{x})\) (本篇为形式统一,只考虑极小化问题),一般可直接求导并用梯度下降或牛顿法迭代求得最优值. 对于含有等式约束的优化问题,即: \[ \begin{aligned} {\min_{\…
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化问题的方法,不…
[整理]   在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下拉格朗日乘子.对学过高等数学的人来说比较拉格朗日乘子应该会有些印象.二者均是求解最优化…
参考:知乎回答 - 通过山头形象描述 参考:马同学 - 如何理解拉格朗日乘子法? 参考: 马同学 - 如何理解拉格朗日乘子法和KKT条件? 参考:拉格朗日乘数 - Wikipedia 自己总结的规律 梯度为0, 其实就是说明里面每一个参数的偏导数都为0. 拉格朗日乘子法是对于等式约束. KKT条件是针对不等式约束条件. 拉格朗日乘子法结论 如果有个约束等式: 只需解如下方程组: KKT条件 求如下的极值: 通过解下面这个方程组来得到答案: 这个方程组也就是所谓的KKT条件. 进一步解释下方程组的…
参考链接: 拉格朗日乘子法和KKT条件 SVM为什么要从原始问题变为对偶问题来求解 为什么要用对偶问题 写在SVM之前——凸优化与对偶问题 1. 拉格朗日乘子法与KKT条件 2. SVM 为什么要从原始问题变为对偶问题来求解 1. 首先是我们有不等式约束方程,这就需要我们写成min max的形式来得到最优解.而这种写成这种形式对x不能求导,所以我们需要转换成max min的形式,这时候,x就在里面了,这样就能对x求导了.而为了满足这种对偶变换成立,就需要满足KKT条件(KKT条件是原问题与对偶问…
目录 1 将有约束问题转化为无约束问题 1.1 拉格朗日法 1.1.1 KKT条件 1.1.2 拉格朗日法更新方程 1.1.3 凸优化问题下的拉格朗日法 1.2 罚函数法 2 对梯度算法进行修改,使其运用在有约束条件下 2.1 投影法 2.1.1 梯度下降法 to 投影梯度法 2.1.2 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来…
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分…
作者:@wzyer 拉格朗日乘子法无疑是最优化理论中最重要的一个方法.但是现在网上并没有很好的完整介绍整个方法的文章.我这里尝试详细介绍一下这方面的有关问题,插入自己的一些理解,希望能够对大家有帮助.本文分为两个部分:第一部分是数学上的定义以及公式上的推导:第二部分主要是一些常用方法的直观解释.初学者可以先看第二部分,但是第二部分会用到第一部分中的一些结论.请读者自行选择. 拉格朗日乘子法的数学基础 共轭函数 对于一个函数f:Rn→R(不要求是凸函数),我们可以定义它的共轭函数f⋆:Rn→R为:…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
引言 本篇文章将详解带有约束条件的最优化问题,约束条件分为等式约束与不等式约束,对于等式约束的优化问题,可以直接应用拉格朗日乘子法去求取最优值:对于含有不等式约束的优化问题,可以转化为在满足 KKT 约束条件下应用拉格朗日乘子法求解.拉格朗日求得的并不一定是最优解,只有在凸优化的情况下,才能保证得到的是最优解,所以本文称拉格朗日乘子法得到的为可行解,其实就是局部极小值,接下来从无约束优化开始一一讲解. 无约束优化 首先考虑一个不带任何约束的优化问题,对于变量 $ x \in \mathbb{R}…
拉格朗日乘子法:对于等式约束的优化问题,求取最优值. KKT条件:对于含有不等式约束的优化问题,求取最优值. 最优化问题分类: (1)无约束优化问题: 常常使用Fermat定理,即求取的导数,然后令其为零,可求得候选最优值. (2)有等式约束的优化问题:, 使用拉格朗日乘子法,把等式约束用一个系数与写为一个式子,称为拉格朗日函数.再通过对各个参数求取导数,联立等式进行求取最优值. (3)有不等式约束的优化问题.,,. 把所有的不等式约束.等式约束和目标函数全部写为一个式子:. KKT条件的最优值…
拉格朗日乘子法是一种优化算法,主要用来解决约束优化问题.他的主要思想是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有n+k个变量的无约束优化问题. 其中,利用拉格朗日乘子法主要解决的问题为: 等式的约束条件和不等式的条件约束. 拉格朗日乘子的背后的数学意义是其为约束方程梯度线性组合中每个向量的系数. 等约束条件的解决方法不在赘述. 对于非等约束条件的求解,需要满足KKT条件才能进行求解.下面对于KKT条件进行分析. 不等式约束优化问题: 得到拉格朗日乘子法的求解方程:…
关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件   目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情…
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 等式约束问题的必要条件: 一个条件,两变量 \(min f(x)=f([x]_1,[x]_2)\) \(s.t. c(x)=c([x]_1,[x]_2)=0\) 则最优解的必要条件如下面式子所示: \(\triangledown f(x^*)+\alpha^* \triangledown c(x^*…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
拉格朗日乘子法: KKT条件:…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
拉格朗日乘子(Lagrange multify)和KKT条件 无约束问题 无约束问题定义如下: f(x)称为目标函数, 其中x是一个向量,它的维度是任意的. 通过求导, 令导数等于零即可: 如下图所示: 等式约束问题 单约束问题 单约束问题定义如下: g(x)称为约束函数 单约束问题的解决步骤如下: 1, 加一个变量,这个变量称为拉格朗日乘子将约束条件和目标函数联立构造拉格朗日函数 2, 对每个变量分别求导, 令导数等于零,求得最优值 这是一个例子: 使用一个约束,一个拉格朗日乘子,得到拉格朗日…
拉格朗日乘子法 \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 \\s.t. \quad 2x_1+x_2 = 1 \\ \quad \quad \quad 2x_2+3x_3 = 2 \] \[min \quad f = 2x_1^2+3x_2^2+7x_3^2 +\alpha _1(2x_1+x_2- 1)+\alpha _2(2x_2+3x_3 - 2) \] \[\dfrac{\partial f}{\partial x_1}=4x_1+2\alpha_1=0\…
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几…
1 前言 拉格朗日乘子法(Lagrange Multiplier)  和 KKT(Karush-Kuhn-Tucker)  条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等约束时使用 KKT 条件.当然,这两个方法求得的结果只是必要条件,只有当目标函数是凸函数的情况下,才能保证是充分必要条件. 1.1 最优化问题三种约束条件 1:无约束条件 解决方法通常是函数对变量求导,令导函数等于0的点可能是极值点,将结果带回原函数进行验证. 2:等式约束条件 设目标函数为 $f(…
参考文献:https://www.cnblogs.com/sddai/p/5728195.html 在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法.在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件. 我们这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题).提到KKT条件一般会附带的提一下…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp…