http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何求解强连通分量的. Tarjan算法在求解强连通分量的时候,通过引入dfs过程中对一个点访问的顺序dfsNum(也就是在访问该点之前已经访问的点的个数)和一个点可以到达的最小的dfsNum的low数组,当我们遇到一个顶点的dfsNum值等于low值,那么该点就是一个强连通分量的根.因为我们在dfs的…
http://poj.org/problem?id=3352 [题意] 给定一个连通的无向图,求最少加多少条边使得这个图变成边双连通图 [AC] //#include<bits/stdc++.h> #include<iostream> #include<cstdio> #include<string> #include<cstring> using namespace std; typedef long long ll; int n,m; ;;…
POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 思路:先求双连通.缩点后.计算入度为1的个数,然后(个数 + 1) / 2 就是答案(这题因为是仅仅有一个连通块所以能够这么搞,假设有多个,就不能这样搞了) 代码: #include <cstdio> #include <cstring> #include <algorithm…
题解转自http://blog.csdn.net/lyy289065406/article/details/6762370   文中部分思路或定义模糊,重写的红色部分为修改过的. 大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,保证任意2个旅游景点之间有路径连通的(可间接连通).而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施. 道路部门每次只会选择一条道路施工,在该条道路施工完毕前,其他道路依然可以通行.然而有道路部门正在施工的道路,在施工完毕前是…
题目链接 题意 :有一个景点要修路,但是有些景点只有一条路可达,若是修路的话则有些景点就到不了,所以要临时搭一些路,以保证无论哪条路在修都能让游客到达任何一个景点 思路 :把景点看成点,路看成边,看要加几条边使这个图变成双连通图.一开始我以为只要求出桥的个数,然后在每个桥的地方加一条边就行了,后来发现不是. 例如:这个图中,桥有4条,但实际上只需要在1跟10,10跟9中间加两条边就行了.所以,实际上这个题是先进行缩点,然后求缩点后的图至少增加几条变能够变成双连通图.缩点之后构建成一颗树,所有的边…
http://poj.org/problem?id=3352 题意: 给出一个图,求最少要加多少条边,能把该图变成边—双连通. 思路:双连通分量是没有桥的,dfs一遍,计算出每个结点的low值,如果相等,说明属于同一个双连通分量. 接下来把连通分量缩点,然后把这些点连边. 对于一棵无向树,我们要使得其变成边双连通图,需要添加的边数 == (树中度数为1的点的个数+1)/2. #include<iostream> #include<algorithm> #include<cst…
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forc…
Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 5031 Description It's almost summer time, and that means that it's almost summer construction time! This year, the good people who are in charge of the r…
http://poj.org/problem?id=3352 有重边的话重边就不被包含在双连通里了 割点不一定连着割边,因为这个图不一定是点连通,所以可能出现反而多增加了双连通分量数的可能 必须要用割边的思路来看 #include <cstdio> #include <vector > using namespace std; const int maxn=1001; vector<int >G[maxn]; int low[maxn],dfn[maxn]; bool…
题目链接:http://poj.org/problem?id=3352 这题和poj 3177 一样,参考http://www.cnblogs.com/frog112111/p/3367039.html AC代码: #include<cstdio> #include<cstring> +; +; struct EDGE { int v,next; }edge[M*]; int first[N],low[N],dfn[N],belong[N],degree[N],sta[M],ins…
这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过这两图好像是无向图,不过那个求割边的算法蛮像Tarjan的,不知道那是不是就是Tarjan. 关于双联通分量,我还要再去学一下,问题还有很多,比如,点双联通,边双联通等等. 我现在只知道: 1.对于无向图,去掉割边后,仍然联通的区域,就是边双联通区域. 2.若要使得任意一棵树(无向图),在增加若干条…
[有向图强连通分量] 在有向图G中,如果两个 顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继…
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; ; ], Next[SIZE * ]; int dfn[SIZE], low[SIZE], c[SIZE]; int n, m, tot, num, dcc, tc; ]…
历时好几天,终于完工了! 支持无向图四种功能:1.割点的求解 2.割边的求解 3.点双连通分量的求解 4.边双连通分量的求解 全部支持重边!!!!全部支持重边!!!!全部支持重边!!!! 测试数据: 10 111 53 54 52 42 34 66 86 77 88 108 9 /* By:ZUFE_ZZT 该模板经过多次修改与研究,修正了很多错误,增加了很多功能. 无向图,完全支持重边!!完全支持重边!! [功能如下] 1.求割点的编号,以及去掉割点有多少连通分量 2.求点双连通分量 3.求割…
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥 也就是说 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥 2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点. 求取割点: 1>当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了. 2>当前节点U不是树根的时候,条件是“low[v]>=dfn[u]”,也就是在u之后遍历的点…
题意:给一个无向图,问需要补多少条边才可以让整个图变成[边双连通图],即任意两个点对之间的一条路径全垮掉,这两个点对仍可以通过其他路径而互通. 思路:POJ 3352的升级版,听说这个图会给重边.先看3352的题解http://www.cnblogs.com/xcw0754/p/4619594.html. 其实与3352不同的就是重边出现了怎么办?假如出现的重边刚好是桥呢? 首先要知道,[割点]可以将两个[点双连通分量]隔开来,因为仅一个[点双连通分量]中肯定无割点,那么每两个点对都同时处于若干…
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而后这个有向图不再联通,我们便称删去的这条边为有向图的桥. 割点:在一个有向图中,如果删去一个点,使这个有向图中剩下的点不在联通,我们便称这个点为有向图的割点. Tarjan算法原理分析: 和上文一样的,我们求出一个dfn数组(进行dfs时遍历的顺序),和一个low数组(以u为根的子树中,能连到dfn…
今天是算法数据结构专题的第36篇文章,我们一起来继续聊聊强连通分量分解的算法. 在上一篇文章当中我们分享了强连通分量分解的一个经典算法Kosaraju算法,它的核心原理是通过将图翻转,以及两次递归来实现.今天介绍的算法名叫Tarjan,同样是一个很奇怪的名字,奇怪就对了,这也是以人名命名的.和Kosaraju算法比起来,它除了名字更好记之外,另外一个优点是它只需要一次递归,虽然算法的复杂度是一样的,但是常数要小一些.它的知名度也更高,在竞赛当中经常出现. 先给大家提个醒,相比于Kosaraju算…
大意:给定一个无向连通图,判断至少加多少的边,才能使任意两点之间至少有两条的独立的路(没有公共的边,但可以经过同一个中间的顶点). 思路:在同一个双连通分量里的所有的点可以看做一个点,收缩后,新图是一棵树,树的边便是原图的桥.现在问题转化为“在树中至少添加多少条边能使图变成边双连通图”,即添加的边的个数=(树中度为一的节点数目+1)/2,用trajan算法求双联通分量 这是一个模板 #include<iostream> #include<cstdio> #include<st…
题意:一个连通的无向图,求至少需要添加几条边,救能保证删除任意一条边,图仍然是连通的. 链接:http://poj.org/problem?id=3352 思路:边的双连通图.其实就是要求至少添加几条边,可以使整个图成为一个边双连通图.用tarjan算法(求割点割边)求出low数组,这里可以简化,然 后依据“low相同的点在一个边连通分量中”,缩点之后构造成树(这里可以直接利用low[]数组,low[i]即为第i节点所在的连通分量的标号).求 出树中出度为1的节点数left,答案即为(leaf+…
POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accepted: 5330 Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the re…
TSP问题描述: 旅行商问题,即TSP问题(Travelling Salesman Problem)又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值.这篇文章解决的tsp问题的输入描述是: TSP问题的动态规划解法: 引用一下这篇文章,觉得作者把动态规划算法讲的非常明白:https://blog.csdn.ne…
转自beyond the void 的博客: https://www.byvoid.com/zhs/blog/scc-tarjan 注:红色为标注部分 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶…
小引 看到这个名词-tarjan,大家首先想到的肯定是又是一个以外国人名字命名的算法.说实话真的是很佩服那些算法大牛们,佩服得简直是五体投地啊.今天就遇到一道与求解有向图中强连通分量的问题,我的思路就是遍历图中的每一个点,然后进行深度遍历,看最后能否回归到这个点上.如果可以回归,那么这个点肯定在一个强连通分量上.可是最后想着想着就乱了...... 没办法,自己low啊,就百度了求有向图中强连通分量的算法,于是乎tarjan算法出现在搜索结果上. 下面说一下,tarjan算法用到的一些图的概念.…
Tarjan算法及其应用 引入 tarjan算法可以在图上求解LCA,强连通分量,双联通分量(点双,边双),割点,割边,等各种问题. 这里简单整理一下tarjan算法的几个应用. LCA http://www.cnblogs.com/mjtcn/p/6852646.html 强联通分量 有向图的 强联通:在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通. 强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这…
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介…
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量…
 转自:https://www.byvoid.com/blog/scc-tarjan/ 網誌 列表 標籤 項目 關於 聯繫 四月142009 作者:byvoid 閱讀: 158882 計算機科學 圖論 強連通分量 Tarjan 堆棧 有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(…
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连通分量就是极大强连通分量. [算法思想] 用dfs遍历G中的每个顶点,通dfn[i]表示dfs时达到顶点i的时间,low[i]表示i所能直接或间接达到时间最小的顶点.(实际操作中low[i]不一定最小,但不会影响程序的最终结果) 程序开始时,time初始化为0,在dfs遍历到v时,low[v]=df…