首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
讨论LSTM和RNN梯度消失问题
】的更多相关文章
讨论LSTM和RNN梯度消失问题
1RNN为什么会有梯度消失问题 (1)沿时间反向方向:t-n时刻梯度=t时刻梯度* π(W*激活函数的导数) …
RNN梯度消失和爆炸的原因 以及 LSTM如何解决梯度消失问题
RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段, 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为 . 则对于一次训练任务的损失函数为 ,即每一时刻损失值的累加. 使用随机梯度下降法训练RNN其实就是对 . . 以及 求偏导,并不断调整它们以使L尽可能达到最小的过程. 现在假设我们我们的时间序列只有三段,t1,t2,t3. 我们只对t3时刻的 求偏导(其他时刻类似): 可以看出对于 求偏导并没有…
LSTM如何解决梯度消失或爆炸的?
from:https://zhuanlan.zhihu.com/p/44163528 哪些问题? 梯度消失会导致我们的神经网络中前面层的网络权重无法得到更新,也就停止了学习. 梯度爆炸会使得学习不稳定, 参数变化太大导致无法获取最优参数. 在深度多层感知机网络中,梯度爆炸会导致网络不稳定,最好的结果是无法从训练数据中学习,最坏的结果是由于权重值为NaN而无法更新权重. 在循环神经网络(RNN)中,梯度爆炸会导致网络不稳定,使得网络无法从训练数据中得到很好的学习,最好的结果是网络不能在长输入数据序…
LSTM改善RNN梯度弥散和梯度爆炸问题
我们给定一个三个时间的RNN单元,如下: 我们假设最左端的输入 为给定值, 且神经元中没有激活函数(便于分析), 则前向过程如下: 在 时刻, 损失函数为 ,那么如果我们要训练RNN时, 实际上就是是对 求偏导, 并不断调整它们以使得 尽可能达到最小(参见反向传播算法与梯度下降算法). 那么我们得到以下公式: 将上述偏导公式与第三节中的公式比较,我们发现, 随着神经网络层数的加深对 而言并没有什么影响, 而对 会随着时间序列的拉长而产生梯度消失和梯度爆炸问题. 根据上述分析整理一下…
RNN、LSTM介绍以及梯度消失问题讲解
写在最前面,感谢这两篇文章,基本上的框架是从这两篇文章中得到的: https://zhuanlan.zhihu.com/p/28687529 https://zhuanlan.zhihu.com/p/28749444 这部分是我给组内的同学做的一个分享PPT,在这里记录一下.…
LSTM及其变种及其克服梯度消失
本宝宝又转了一篇博文,但是真的很好懂啊: 写在前面:知乎上关于lstm能够解决梯度消失的问题的原因: 上面说到,LSTM 是为了解决 RNN 的 Gradient Vanish 的问题所提出的.关于 RNN 为什么会出现 Gradient Vanish,上面已经介绍的比较清楚了,本质原因就是因为矩阵高次幂导致的.下面简要解释一下为什么 LSTM 能有效避免 Gradient Vanish. 对于 LSTM,有如下公式 模仿 RNN,我们来计算 ,有 <img src="https:…
Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环神经网络,但是并没有涉及随时间反向传播(BPTT)算法如何计算梯度的细节.在这部分,我们将会简要介绍BPTT并解释它和传统的反向传播有何区别.我们也会尝试着理解梯度消失问题,这也是LSTM和GRU(目前NLP及其它领域中最为流行和有用的模型)得以发展的原因.梯度消失问题最早是由 Sepp Hochr…
太深了,梯度传不下去,于是有了highway。 干脆连highway的参数都不要,直接变残差,于是有了ResNet。 强行稳定参数的均值和方差,于是有了BatchNorm。RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM。 LSTM简化一下,有了GRU。
请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及较新的SELU.太深了,梯度传不下去,于是有了highway.干脆连highway的参数都不要,直接变残差,于是有了ResNet.强行稳定参数的均值和方差,于是有了BatchNorm.在梯度流中增加噪声,于是有了 Dropout.RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM.LSTM简化…
RNN神经网络产生梯度消失和梯度爆炸的原因及解决方案
1.RNN模型结构 循环神经网络RNN(Recurrent Neural Network)会记忆之前的信息,并利用之前的信息影响后面结点的输出.也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出.下图为RNN模型结构图: 2.RNN前向传播算法 RNN前向传播公式为: 其中: St为t时刻的隐含层状态值: Ot为t时刻的输出值: ①是隐含层计算公式,U是输入x的权重矩阵,St-1是t-1时刻的状态值,W是St-1作为输入的权重矩阵,$\…
机器学习 —— 基础整理(八)循环神经网络的BPTT算法步骤整理;梯度消失与梯度爆炸
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…