[Splay伸展树]splay树入门级教程】的更多相关文章

首先声明,本教程的对象是完全没有接触过splay的OIer,大牛请右上角.. 首先引入一下splay的概念,他的中文名是伸展树,意思差不多就是可以随意翻转的二叉树 PS:百度百科中伸展树读作:BoGang,不知道是不是因为和某位大牛有关系 先看一道题目: skydec有n个数,每次他都会把一些数放进一些盒子里,由于skydec太傻×,所以他不能判断数的大小,现在他请求你帮他求盒子里的第K小数 输入:一个数n表示数的个数,一个数m表示操作的个数 (n<=m<=100000) 操作由2部分组成,简…
最近“hiho一下”出了平衡树专题,这周的Splay一直出现RE,应该删除操作指针没处理好,还没找出原因. 不过其他操作运行正常,尝试用它写了一道之前用set做的平衡树的题http://codeforces.com/problemset/problem/675/D,运行效果居然还挺好的,时间快了大概10%,内存少了大概30%. #include <cstdio> #include <cstring> #include <string> #include <cstd…
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Tarjan 优点:每次查询会调整树的结构,使被查询频率高的条目更靠近树根. Tree Rotation   树的旋转是splay的基础,对于二叉查找树来说,树的旋转不破坏查找树的结构.   Splaying   Splaying是Splay Tree中的基本操作,为了让被查询的条目更接近树根,Spla…
伸展树概念 伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入.查找和删除操作.它由Daniel Sleator和Robert Tarjan创造. (01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x].如果y是x的左子树中的一个结点,则key[y] <= key[x]:如果y是x的右子树的一个结点,则key[y] >= key[x]. (02) 除了拥有二叉查找树的性质…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢!  我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次搜索的复杂度为n的量级.AVL树通过动态平衡树的深度,单次搜索的复杂度为log(n) (以上参考纸上谈兵 AVL树).我们下面看伸展树(splay tree),它对于m次连续搜索操作有很好的效率. 伸展树会在一次搜索后,对树进行一些特殊的操作.这些操作的理念与AVL树有些类似,即通过旋转,来改变树…
  伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(lgN)内完成插入.查找和删除操作.在伸展树上的一般操作都基于伸展操作:假设想要对一个二叉查找树执行一系列的查找操作,为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置.于是想到设计一个简单方法, 在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方.伸展树应运而生.其插入.删除.查找操作基本与二叉搜索树的相同.其唯一的不同之处在于每次的插入.删除.查找操作都需要将其对应的节点通过旋转…
◆学时·VI◆ SPLAY伸展树 平衡树之多,学之不尽也…… ◇算法概述 二叉排序树的一种,自动平衡,由 Tarjan 提出并实现.得名于特有的 Splay 操作. Splay操作:将节点u通过单旋.双旋移动到某一个指定位置. 主要目的是将访问频率高的节点在不改变原顺序的前提下移动到尽量靠近根节点的位置,以此来解决同一个(相似)问题的多次查询. 但是在非降序查询每一个节点后,Splay 树会变为一条链,降低运算效率. ◇原理&细解 (1)旋转操作 二叉排序树必须满足 左儿子<根节点<右…
伸展树的基本操作与应用 [伸展树的基本操作] 伸展树是二叉查找树的一种改进,与二叉查找树一样,伸展树也具有有序性.即伸展树中的每一个节点 x 都满足:该节点左子树中的每一个元素都小于 x,而其右子树中的每一个元素都大于 x.与普通二叉查找树不同的是,伸展树可以自我调整,这就要依靠伸展操作 Splay(x,S). 伸展操作 Splay(x,S) 伸展操作 Splay(x,S)是在保持伸展树有序性的前提下,通过一系列旋转将伸展树 S 中的元素 x 调整至树的根部.在调整的过程中,要分以下三种情况分别…
目录 局部性 双层伸展 查找操作 插入操作 删除操作 性能分析 完整源码 与AVL树一样,伸展树(Splay Tree)也是平衡二叉搜索树的一致,伸展树无需时刻都严格保持整棵树的平衡,也不需要对基本的二叉树结点做任何附加改动,能够保持分摊意义下的高效率. 局部性 通常在任意数据结构的生命期内,执行不同操作的概率往往极不均衡,且各操作之间具有极强的关联性,比如数据局部性,所谓数据局部性包括: 刚刚被访问到的元素,很可能不久之后就再次被访问 将被访问的下一元素,很可能就处于不久之前被访问够的某个元素…
前言 splay学了已经很久了,只不过一直没有总结,鸽了好久来写一篇总结. 先介绍 splay:亦称伸展树,为二叉搜索树的一种,部分操作能在 \(O( \log n)\) 内完成,如插入.查找.删除.查询序列第 \(k\) 大.查询前缀(比查询的数小的数中最大的数).查询后缀(比查询的数大的数中最小的数)等操作,甚至能够实现区间平移.它由 Daniel Sleator 和 Robert Endre Tarjan 在1985年发明的.注:时间复杂度是均摊为 \(O(\log n)\) ,是经过严谨…