Sensor/组织: Uber Status: Reading Summary: 非常棒!端到端输出map中间态 一种建图 感知 预测 规划的通用框架 Type: CVPR Year: 2021 引用量: 20 参考与前言 论文链接: https://openaccess.thecvf.com/content/CVPR2021/papers/Casas_MP3_A_Unified_Model_To_Map_Perceive_Predict_and_Plan_CVPR_2021_paper.pdf…
CNN-RNN: A Unified Framework for Multi-label Image Classification Updated on 2018-08-07 22:30:41 Paper: https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Wang_CNN-RNN_A_Unified_CVPR_2016_paper.pdf 本文提出了一种 model 多标签之间关系的一种模型,即:CNN-LSTM…
13 A Data-Driven Graph Generative Model for Temporal Interaction Networks link:https://scholar.google.com.sg/scholar_url?url=https://par.nsf.gov/servlets/purl/10272483&hl=zh-TW&sa=X&ei=HCmOYrzrJ8nFywSFg47QCw&scisig=AAGBfm08x5PFAPPWh_nl6CoU…
YOLO的一大特点就是快,在处理上可以达到完全的实时.原因在于它整个检测方法非常的简洁,使用回归的方法,直接在原图上进行目标检测与定位. 多任务检测: 网络把目标检测与定位统一到一个深度网络中,而且可以同时在原图上检测多个物体.步骤总结如下: (1)把图片分割成S*S个方格,假如某个物体的中点落在其中一个方格,那么这个方格就对这个物体负责.这里说的物体的中点应该是指ground truth box中的物体的中心. (2)对于每个格子,预测B个bounding box以及相应的confidence…
名称:FaceNet: A Unified Embedding for Face Recognition and Clustering 时间:2015.04.13 来源:CVPR 2015       来自谷歌的一篇文章,这篇文章主要讲述的是一个利用深度学习来进行人脸识别的方法,目前在LFW上面取得了最好的成绩,识别率为99.63%.传统的基于CNN的人脸识别方法为:利用CNN的Siamese网络来提取人脸特征,然后利用SVM等方法进行分类.而本篇文章提出了一个方法叫做FaceNet,它直接学习…
介绍 提出了一个低代价双目视觉惯导定位系统,实现了基于多状态约束下的卡尔曼滤波器(MSCKF)VIO,采用了先验雷达地图.除了稀疏的视觉特征,雷达地图与半稠密的点云也通过紧耦合的MSCKF进行更新,进而可以纠正漂移.点云和视觉之间的跨模态限制对VIO系统有改善作用. 总之就是提出了VIO状态估计器,其中点云地图提供了先验,考虑到计算效率,采用MSCKF,实现在线定位,仅仅维护一个固定大小的窗口,优化IMU位姿,窗口中不保留特征.同时生成半稠密地图,产生视觉点云,该点云能在雷达地图中进行配准,结果…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文链接: https://arxiv.org/pdf/1512.02325.pdf 代码下载: https://github.com/weiliu89/caffe/tree/ssd Abstract We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of boun…