TVM:Relay算子实现流程】的更多相关文章

向Relay添加算子 为了在Relay IR中使用TVM算子,需要在Relay中注册算子,以确保将其集成到Relay的类型系统中. 注册算子需要三个步骤: 使用RELAY_REGISTER_OPC ++中的宏注册算子的Arity和类型信息 定义一个C ++函数为算子生成一个调用节点,并为该函数注册一个Python API挂钩 将上述Python API挂钩包装在更整洁的界面中 该文件src/relay/op/tensor/binary.cc提供了前两个步骤的python/tvm/relay/op…
TVM如何训练TinyML 机器学习研究人员和从业人员对"裸机"(低功耗,通常没有操作系统)设备产生了广泛的兴趣.尽管专家已经有可能在某些裸机设备上运行某些模型,但是为各种设备优化模型的挑战非常艰巨,通常需要手动优化设备特定的库.对于那些没有Linux支持的平台,不存在用于部署模型的可扩展解决方案.因此,为了定位新设备,开发人员必须实现一次性的定制软件堆栈,以管理系统资源和调度模型执行. 机器学习软件的手动优化不是裸机设备领域独有的.实际上,对于使用其它硬件后端(例如GPU和FPGA)…
TVM代码生成codegen 硬件后端提供程序(例如Intel,NVIDIA,ARM等),提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供框架例,如带有图形引擎的DNNL或TensorRT,使用户以某种方式描述模型,实现高性能.此外,新兴的深度学习加速器还具有自己的编译器,内核库或runtime框架. 当用户尝试在新的内核库或设备上工作时,必须学习新的编程接口.对统一编程接口的需求变得越来越重要,使所有用户和硬件后端提供程序都在同一页面上. 为了与广泛使用的深度学…
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结构. HuggingFace transformers library是实现最受欢迎的库之一. 与已经高度优化的实现的卷积模型或LSTM相比,对于Transformers而言,情况并非如此.本文探索TVM如何填补空白.分两个步骤进行操作: 首先,在TVM上,使用BERT inference推理和调优…
TVM部署预定义模型 本文通过深度学习框架量化的模型加载到TVM中.预量化的模型导入是在TVM中提供的量化支持之一. 本文演示如何加载和运行由PyTorch,MXNet和TFLite量化的模型.加载后,可以在任何TVM支持的硬件上运行已编译的量化模型. 首先,必要输入 from PIL import Image import numpy as np import torch from torchvision.models.quantization import mobilenet as qmob…
TVM Pass IR如何使用 随着Relay / tir中优化遍数的增加,执行并手动维护其依赖关系变得很棘手.引入了一个基础结构来管理优化过程,并应用于TVM堆栈中IR的不同层. Relay / tir程序的优化可以以各种粒度应用,即分别使用tvm.relay.transform.FunctionPass/ tvm.tir.transform.PrimFuncPass和的功能级别和模块级别tvm.transform.ModulePass.或者,用户可以依靠在tvm.transform.Sequ…
如何使用TVM Pass红外线 随着Relay / tir中优化遍数的增加,执行并手动维护其依赖关系变得很棘手.引入了一个基础结构来管理优化过程,将其应用于TVM堆栈中IR的不同层. Relay / tir程序的优化可以以各种粒度应用,分别使用tvm.relay.transform.FunctionPass/ tvm.tir.transform.PrimFuncPass和的功能级别和模块级别tvm.transform.ModulePass .用户可以依靠在tvm.transform.Sequen…
将代码生成器带入TVM 为了使数据科学家不必担心开发新模型时的性能,硬件后端提供程序(例如Intel,NVIDIA,ARM等)可以提供诸如cuBLAS或cuDNN之类的内核库以及许多常用的深度学习内核,或者提供诸如此类的框架.例如带有图形引擎的DNNL或TensorRT,使用户以某种方式描述其模型以实现高性能.此外,新兴的深度学习加速器还具有自己的编译器,内核库或运行时runtime框架. 当用户尝试在新的内核库或设备上工作时,必须学习新的编程接口.结果,对统一编程接口的需求变得越来越重要,使所…
TVM设计与构架构建 本文档适用于希望了解TVM体系结构和/或在项目上进行积极开发的开发人员.该页面的组织如下: 实例编译流程Example Compilation Flow描述TVM把一个模型的高级描述到可部署模块的步骤. "逻辑体系结构组件" Logical Architecture Components部分描述了逻辑组件.针对每个逻辑组件的特定内容,按组件名称组织. 开发人员操作手册,以获取有用的开发技巧. 本文提供了一些体系结构的补充视图.首先,回顾一个端到端的编译流程,并讨论…
如何在TVM上集成Codegen(上) 许多常用的深度学习内核,或者提供DNNL或TensorRT等框架和图形引擎,让用户以某种方式描述他们的模型,从而获得高性能.此外,新兴的深度学习加速器也有自己的编译器.内核库或runtime框架. 然而,当用户试图在一个新的内核库或设备上工作时,必须学习一个新的编程接口.因此,对于统一编程接口的需求变得越来越重要,以便让所有用户和硬件后端提供商站在同一个页面上. 为了与广泛使用的深度学习框架共享编程接口,许多硬件设备提供商尝试将其设备后端集成到Tensor…