luogu-P3262题解】的更多相关文章

p1993 小康的农场 CSP_S 1=之后就没怎么写题解.. 推荐博客食用 预备知识 明显这是一道差分约束的题,以下简称差分 有些人可能不了解差分,请点 [传送门] 至于用差分做的题的特征,无一都是你可以列出每个变量之间的一些不等关系,就如下 \[ \begin{cases} x_1-x_2 \le a_1 \\ x_2-x_3 \le a_2 \\ x_3-x_4 \le a_3 \\ \ldots \ldots \\ x_n-x_n \le a_{n-1} \\ \end{cases} \…
题意 给定一棵高度为 \(n\) 的完全二叉树,可以将节点设置成两种状态.如果某个叶子 \(x\) 的状态为 \(i\) 同时他的某个祖先也为 \(i\),那么这个叶子就会对祖先产生 \(f_{x,i}\) 的贡献.求叶子状态为 \(0\) 的数量小于等于 \(m\) 的最大贡献. \(\texttt{Data Range:}1\leq n\leq 10,m\leq 2^{n-1}\) 题解 考虑先设一个 \(f_{i,j}\) 表示到了 \(i\) 点,叶子选了 \(j\) 个 \(0\) 的…
题面 Byteasar 想在墙上涂一段很长的字符,他为了做这件事从字符的前面一段中截取了一段作为模版. 然后将模版重复喷涂到相应的位置后就得到了他想要的字符序列.一个字符可以被喷涂很多次,但是一个位置不能喷涂不同的字符.做一个模版很费工夫,所以他想要模版的长度尽量小,求最小长度是多少.拿样例来说 ababbababbabababbabababbababbaba , 模版为前8个字符ababbaba, 喷涂的过程为: ababbababbabababbabababbababbaba 分析 仔细分析…
题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把DP转移方程写成矩阵乘法,然后用线段树(树上的话就是树剖)维护矩阵,这样就可以做到修改了. 注意这个"矩阵乘法"不一定是我们常见的那种乘法和加法组成的矩阵乘法.设\(A * B = C\),常见的那种矩阵乘法是这样的: \[C_{i, j} = \sum_{k = 1}^{n} A_{i,…
这里是总链接\(Link\). \(A\) 题意:求\(\sum_{i=1}^{k} a_i\times b^{k-i}\)的奇偶性, \(k = \Theta(n \log n)\) --其实很容易想麻烦,比如说逐个判断,整体判断啥的.但其实只要对结果都\(\bmod ~10\),然后判断奇偶性就好了. cin >> b >> k ; for (i = 1 ; i <= k ; ++ i) scanf("%d", &base[i]) ; reve…
[luogu]P1053 篝火晚会 题目描述 佳佳刚进高中,在军训的时候,由于佳佳吃苦耐劳,很快得到了教官的赏识,成为了“小教官”.在军训结束的那天晚上,佳佳被命令组织同学们进行篝火晚会.一共有n个同学,编号从1到n.一开始,同学们按照1,2,……,n的顺序坐成一圈,而实际上每个人都有两个最希望相邻的同学.如何下命令调整同学的次序,形成新的一个圈,使之符合同学们的意愿,成为摆在佳佳面前的一大难题. 佳佳可向同学们下达命令,每一个命令的形式如下: (b1, b2,... bm -1, bm) 这里…
Online Judge:Bzoj4007,Luogu P3262 Label:暴力,树形Dp 题解 参考了这篇blog https://www.cnblogs.com/GXZlegend/p/8300883.html. 定义状态\(dp[i][j]\),表示以i为根的子树中有j个叶子节点打战的收益. 由于是一棵标准的完全二叉树,所以转移时用类似背包的方式合并两棵子树的贡献. 能产生贡献的只有平民(叶子节点),所以递归到叶子时才能计算贡献,而这个贡献值还与祖先的选择有关,所以必须在之前递归的时候…
题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围的棋子可以移到空格中.要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变. 输入输出格式 输入格式: 输入初试状态,一行九个数字,空格用0表示 输出格式: 只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数(测试数据中无特殊无法到达目标状态数据)…
一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\binom{L}{i}=(sx+1)^L$ 答案相当于这个多项式模$ k$的各项系数的和 发现这和LJJ学二项式定理几乎一模一样 我上一题的题解 然而直接搞是$ k^2$的,无法直接通过本题 以下都用$ w$表示$ k$次单位根 设$ F_i$为次数模$ k$为$ i$的项的系数和 单位根反演一下得到$F…
https://www.luogu.org/problemnew/show/P2279 一开始就想到了贪心的方法,不过一直觉得不能证明. 贪心的考虑是在深度从深到浅遍历每个结点的过程中,对于每个没有覆盖的结点选择覆盖他的祖父结点. 仔细想想觉得这是正确的. 在实现的过程中有一个小技巧是o[i]记录i结点距离消防局最近的距离,如果o[i] > 2则需要在他的祖父结点建立一个消防站.用这种方法可以很方便的判断兄弟节点是否被覆盖. 一个细节是要给根节点1建立两个虚结点N + 1和N + 2作为他的父亲…