这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 feature map 进行综合也能达到同样的效果.文章的核心之一是同时采用lower和upper的feature map做检测.          …
一. 算法概述 本文提出的SSD算法是一种直接预测目标类别和bounding box的多目标检测算法.与faster rcnn相比,该算法没有生成 proposal 的过程,这就极大提高了检测速度.针对不同大小的目标检测,传统的做法是先将图像转换成不同大小(图像金字塔),然后分别检测,最后将结果综合起来(NMS).而SSD算法则利用不同卷积层的 个).最后将前面三个计算结果分别合并然后传给loss层. 二. Default box 文章的核心之一是作者同时采用lower和upper的featur…
参考资料: 1.https://github.com/dragen1860/TensorFlow-2.x-Tutorials 2.<Adversarial Feature Learning> 本次是对阅读BiGAN论文的一个记录,包含我自己对于BiGAN的一些理解 因为BiGAN在代码实现上没有很大的不同,甚至类似经典GAN(详见:https://www.cnblogs.com/DAYceng/p/16365562.html),所以这里不做介绍 参考1中有源码 依然是免责声明:水平有限,有错误…
估计器初始化简述 单目紧耦合VIO是一个高度非线性的系统,需要在一开始就进行准确的初始化估计.通过将IMU预积分与纯视觉结构进行松耦合对齐,我们得到了必要的初始值. 理解:这里初始化是指通过之前imu预积分得到的数值和视觉结构得到的数值进行对齐整理,综合运算得到的是我们的初始值. 具体流程如下: 检查最新帧和之前所有帧之间的特征对应关系:如果能在滑动窗口中找到稳定的特征跟踪(超过30个被跟踪特征)和足够的视差(超过20个旋转补偿像素),就使用五点法恢复这两帧之间的相对运动:如果没有稳定的特征跟踪…
VINS-Mono 概述 VINS-Mono VINS-Mono是由一个单目相机和一个低成本IMU组成的鲁棒通用的单目视觉惯性系统.通过融合预积分的IMU测量值和特征观测值来获得高精度的视觉惯性里程计,在结合闭环检测和图优化,构成了一个完整的单目VIO-SLAM系统. VINS-Mono包含以下的特性: 可以从未知的状态进行初始化,,来引导滑窗优化的VIO 紧耦合优化的VIO同时优化IMU 在线重定位功能和4自由度的全局位姿优化 位姿图可以复用,保存,加载以及融合多个局部位姿图 大致流程 1.从…
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 本篇论文是针对现有表征算法计算开销比较大,不能够很好应用到大规模网络上的问题. (2) 主要贡献 Contribution: 提出一种快速且可扩展网络表征框架,LouvainNE,能够为包含数百亿边的网络生成高质量的表征向量. (3) 算法…
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能捕获具有高度非线性的网络结构,导致学习到一个局部最优的节点向量表示. (2) 主要贡献 Contribution: 提出一个半监督的深度模型SDNE,包含多个非线性层,同时优化一阶和二阶相似度的目标函数来保留原始网络的局部和全局网络结构,因此可能能够捕获高度非线性的网络结构. (3) 算法原理 简单…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① Positive Re-Weighting: 其中 若太大,则选择的样本标签的可信度小:若太小,则样本数量不足以进行矩阵学习,因此设置如下的: 其中,σ为 [0, 1],如果 σ = 1,则说明充分相信样本估计的可信度,反之设置为 σ = 0. ② Negative Re-Weighting: 对于所…