pandas基础--汇总和计算描述统计】的更多相关文章

pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
pandas对象拥有一组常用的数学和统计方法,大部分都属于约简和汇总统计,用于从Series中提取单个的值,或者从DataFrame中的行或列中提取一个Series.相比Numpy而言,Numpy都是基于没有缺失数据的假设而构建的. 来看一个简单的例子 In [6]: df=DataFrame([[1.4,np.nan],[7,-4],[np.nan,np.nan],[0.75,-1.3]],index=['a ...: ','b','c','d'],columns=['one','two'])…
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描述统计 import numpy as np import pandas as pd #定义一个4*2维的数据结构 df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], index = list…
pandas 对象拥有一组常用的数学和统计方法. 他们大部分都属于简约和汇总统计, 用于从Series中提取单个值(如sum或mean) 或从DataFrame的行或列中提取一个Series.跟对应的Numpy数组方法对比, 他们都是基于没有缺失数据的假设而构建的. 看例子: sum方法 调用DataFrame的sum方法将会返回一个含有列小计的Series: 行求和 传入axis=1 将会按行进行求和运算: 自动排除NA值 除非整个切片(这里指的是行或列)都是NA.通过skipna选项可以禁用…
pandas对象有一些常用的数学和统计的方法,大部分都属于约简或汇总统计. SUM方法 DataFrame对象的sum方法,返回一个含有列小计的Series >>> df = DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index = ['a','b','c','d'],columns = ['one','two']) >>> >>> >>> df o…
调用DataFrame的sum方法会返还一个含有列的Series: In [5]: df = DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=["a","b","c","d"],columns=["one","two"]) In [6]: df Out[6]: one two a 1.40 NaN…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. In [1]: import numpy as np In [2]: import pandas as pd In [3]: from pandas import DataFrame,Series In [4]: data = {'class':['语文','数学','英语'],'score':[120,130,140]} In [5]: frame = DataFrame(data)…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 第9节 绘图和可视化 pandas 回顾 一.实验简介 学习数据分析的课程,需要同学们掌握好 Python 的语言基础,和对 Numpy 与 Matplotlib 等基本库有一些了解.同学们可以参考学习实验楼的 Python 语言基础教程与 Python 科学计算的课程. pandas 是后面我们…
shell脚本语法基础汇总 将命令的输出读入一个变量中,可以将它放入双引号中,即可保留空格和换行符(\n) out=$(cat text.txt) 输出1 2 3 out="$(cat text.txt)" 输出: 1 2 3 --------------[]一般用于算术比较 -gt 大于 -lt 小于 -ge 大于等于 -le 小于等于 逻辑与-a [ $var1 -eq 0 -a $var2 -gt 2 ] 逻辑或 [ $var1 -eq 0 -o $var2 -gt 2 ] […