XGBoost、LightGBM参数讲解及实战】的更多相关文章

本文链接:https://blog.csdn.net/linxid/article/details/80785131XGBoost一.API详解xgboost.XGBClassifier1.1 参数1.1.1 通用参数:booster=‘gbtree’ 使用的提升数的种类 gbtree, gblinear or dartsilent=True: 训练过程中是否打印日志n_jobs=1: 并行运行的多线程数1.1.2 提升树参数learning_rate=0.1: 训练的学习率,和梯度下降差不多m…
XGBoost 重要参数(调参使用) 数据比赛Kaggle,天池中最常见的就是XGBoost和LightGBM. 模型是在数据比赛中尤为重要的,但是实际上,在比赛的过程中,大部分朋友在模型上花的时间却是相对较少的,大家都倾向于将宝贵的时间留在特征提取与模型融合这些方面.在实战中,我们会先做一个baseline的demo,尽可能快尽可能多的挖掘出模型的潜力,以便后期将精力花在特征和模型融合上.这里就需要一些调参功底. 本文从这两种模型的一共百余参数中选取重要的十余个进行探讨研究.并给大家展示快速轻…
这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法. Random Forest(随机森林): 随机森林属于Bagging,也就是有放回抽样,多数表决或简单平均.Bagging之间的基学习器是并列生成的.RF就是以决策树为基学习器的Bagging,进一步在决策树的训练过程中引入了随机特征选择,这会使单棵树的偏差增加,但总体而言有利于集成.RF的每个基学习器只使用了训练集中约63.2%的样本,剩下的样本可以用作袋外估计. 一般使用的是sk…
俄罗斯搜索巨头 Yandex 昨日宣布开源 CatBoost ,这是一种支持类别特征,基于梯度提升决策树的机器学习方法. CatBoost 是由 Yandex 的研究人员和工程师开发的,是 MatrixNet 算法的继承者,在公司内部广泛使用,用于排列任务.预测和提出建议.Yandex 称其是通用的,可应用于广泛的领域和各种各样的问题. 笔者相关文章: R+工业级GBDT︱微软开源 的LightGBM(R包已经开放) R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgbo…
转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善基本学习器的泛化能力和鲁棒性. 根据基本学习器的生成方式,目前的集成学习方法大致分为两大类:即基本学习器之间存在强依赖关系.必须串行生成的序列化方法,以及基本学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就…
在我们进行交流谈话时,人与人之间总要保持一定的距离,尤其是在疫情的情况下,人与人之间更要保持一定的安全距离,今天给大家来介绍一个检测社交距离的项目,实现社交距离检测器. 社交距离(Social Distance) 社会隔离是一种控制传染病传播的方法,保持一定的社交距离,可以让我们减少亲密接触,从而减少传染病的传播,在疫情期间,我们用人与人之间的实际距离,比如人与人之间相隔2米来衡量,作为一个阈值,超过2米远,则是安全距离,反之违反了安全距离,在计算机中如何做到这样的检测呢?如何构建这样社交距离检…
原文链接:(万字好文)Dubbo服务熔断与降级的深入讲解&代码实战 一.Dubbo服务降级实战 1 mock 机制 谈到服务降级,Dubbo 本身就提供了服务降级的机制:而 Dubbo 的服务降级机制主要是利用服务消费者的 mock 属性. 服务消费者的 mock 属性有以下三种使用方式,下面将带着例子简单介绍一下. 1.1 服务消费者注册url的mock属性 例子: mock=return+null,即当服务提供者出现异常(宕机或者业务异常),则返回null给服务消费者. 2021-01-26…
百度文库: http://wenku.baidu.com/link?url=s66Hw6byBEzmjL77doYL1YQN4Y_39F7MovaHKs5mVGrzTDOQCAmiM-1N_6Cdm-4yWDATgwH2RCA-fAzmWBIu-1yyq8Td0hcWwYxaYdNPNim&from_mod=download android ui界面设计参数讲解 android:layout_width    设置组件的宽度    android:layout_height    设置组件的高度…
(搬运)XGBoost中参数调整的完整指南(包含Python中的代码) AARSHAY JAIN, 2016年3月1日     介绍 如果事情不适合预测建模,请使用XGboost.XGBoost算法已成为许多数据科学家的终极武器.它是一种高度复杂的算法,功能强大,足以处理各种不规则的数据. 使用XGBoost构建模型很容易.但是,使用XGBoost改进模型很困难(至少我很挣扎).该算法使用多个参数.要改进模型,必须进行参数调整.很难得到像实际问题的答案 - 你应该调整哪一组参数?获得最佳输出的这…
笔记 4.Redis工具类封装讲解和实战     简介:高效开发方式 Redis工具类封装讲解和实战         1.常用客户端 https://redisdesktop.com/download         2.封装redis工具类并操作 开始 主要讲开发中的技巧 Redis 桌面管理工具 RedisDesktopManager 2019.2 发布 https://www.oschina.net/news/108331/redis-desktop-manager-2019-2-rele…