本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深度学习的下一个热点,它将改变我们认知世界的方式. 准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家. 举个对抗式训练的例子,当你试图通过模仿别人完成某项工作时,如果专家都无法分辨这项工作是你完成的还是你的模仿对象完成的,说明你已经完…
ReLeQ:一种自动强化学习的神经网络深度量化方法     ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Approach for Deep Quantization of Neural Networks 量化作为压缩的一种重要手段被广泛应用,而位宽和准确率的矛盾也始终存在.目前解决的方法有如CLIP-Q中的贝叶斯优化器,确定位宽.另一个问题是量化值的选取,在LQ-Net中采取了交替训练的方式. 如果将量化…
今天开始百度前端学习,以此为证…
到场mysql简介 my.ini 于[mysqld]以下被加入 skip-grant-tables win+R 热键 进cmd 然后输入命令net stop mysql  最后一点,使文件夹mysql件夹下的bin文件夹 输入命令 mysqld-nt --skip-grant-tables (本地測试提示一个waring 貌似没影响) 再次win+R快捷键  输入cmd 然后输入命令 mysql -u root 回车,此时应该进入mysql了 选择数据库  user mysql; 改动passw…
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32*32 卷积层:2个 降采样层(池化层):2个 全连接层:2个 输出层:1个.10个类别(数字0-9的概率) LeNet-5网络是针对灰度图进行训练的,输入图像大小为32*32*1,不包含输入层的情况下共有7层,每层都包含可训练参数(连接权重).注:每个层有多个Feature Map,每个Featu…
针对深度学习(神经网络)的AI框架调研 在我们的AI安全引擎中未来会使用深度学习(神经网络),后续将引入AI芯片,因此重点看了下业界AI芯片厂商和对应芯片的AI框架,包括Intel(MKL CPU).谷歌(TPU).NVidia(GPU).华为和寒武纪,发现所有的AI芯片都支持TensorFlow框架. 从收集到的信息来看: 1.目前TensorFlow在智能边缘计算中是主流,例如TensorFlow提供了移动端应用开发API,参考资料中包含了示例. 2.AI芯片对深度学习的加速效果,其中NVI…
开源脉冲神经网络深度学习框架--惊蛰(SpikingJelly) 背景 近年来神经形态计算芯片发展迅速,大量高校企业团队跟进,这样的芯片运行SNN的能效比与速度都超越了传统的通用计算设备.相应的,神经形态感知芯片也发展迅速.目前已有各种模态的感知芯片,其中如北京大学黄铁军教授团队的Vidar相机,功能上仿照视网膜中央凹,能输出脉冲信号,高速情况下实现比传统相机更清晰的采样.脉冲网络研究领域顶会文章与Nature Science刊物文章也在逐年增长(如下图).通过ANN转换SNN,SNN首次达到媲…
NVIDIA深度学习Tensor Core性能解析(下) DeepBench推理测试之RNN和Sparse GEMM DeepBench的最后一项推理测试是RNN和Sparse GEMM,虽然测试中可以选择FP16,但实际上它们都只支持FP32运算. 虽然RNN可能会有加速,但DeepBench和NVIDIA目前仅支持单精度RNN推理. NVIDIA Caffe2测试之ResNet50和ImageNet 虽然内核和深度学习数学运算可能很有用,但实际应用中是使用真实数据集进行训练的.使用标准的IL…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
1.AI:人工智能(Artificial Intelligence) 2.机器学习:(Machine Learning, ML) 3.深度学习:Deep Learning 人工功能的实现是让机器自己学习,其中深度学习就是其中一种学习方法,深度学习就是基于多层神经网络发展而来,可以简单看成深度学习就是多层神经网络.…