决策树分析、EMV(期望货币值)】的更多相关文章

名称:决策树分析.EMV(期望货币值) 定义:它利用了概率论的原理,并且利用一种树形图作为分析工具.其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据. 要素:整个决策树由决策结点.方案分枝.状态结点.概率分枝和结果点五个要素构成. 步骤: 1.绘制决策树图.从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程. 2.按从右到左的顺序计算各方案的期望值,并将结果写在相应…
微软数据挖掘算法:Microsoft 目录篇 介绍: Microsoft 决策树算法是分类和回归算法,用于对离散和连续属性进行预测性建模. 对于离散属性,该算法根据数据集中输入列之间的关系进行预测. 它使用这些列的值(也称之为状态)预测指定为可预测的列的状态. 具体地说,该算法标识与可预测列相关的输入列. 例如,在预测哪些客户可能购买自行车的方案中,假如在十名年轻客户中有九名购买了自行车,但在十名年龄较大的客户中只有两名购买了自行车,则该算法从中推断出年龄是自行车购买情况的最佳预测因子. 决策树…
如果我们用下列语句输出一个数 System.out.println(123456.789); 将会在Console看到输出 123456.789 那么如何得到123,456.789这种格式化的输出呢?这里就需要用到java.text.Format这个类.不仅是数字,它还提供了货币值和百分数的格式化输出,比如0.58的百分数输出形式是58%.要获得本地的默认格式,可以用下列方法获得 NumberFormat.getNumberInstance() NumberFormat.getCurrencyI…
决策树(Decision Tree)在机器学习中也是比较常见的一种算法,最早的决策树算法是ID3,改善后得到了C4.5算法,进一步改进后形成了我们现在使用的C5.0算法,综合性能大幅提高. 算法核心:为每一次分裂确定一个分裂属性.ID3采用的是“信息增益”为度量来选择分裂属性的. 本文在Excel中建模进行决策树分析,属于基础的决策树学习,有兴趣的可以在SPSS Modeler和Python中进行操作. 树模型(又称决策树或者树结构模型):基本思想和方差分析中的变异分解极为相似.目的(基本原则)…
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP MM模块-分析采购收货完成标识   前言部分 大家可以关注我的公众号,公众号里的排版更好,阅读更舒适. 正文部分 采购订单里有个收货完成标识 如果这个标识勾选上了,证明收货已完成 这时采购订单的未清数量为0,即没有未清数量了 一般配置是:全部收货完成后,收货完成标识自动勾选 另一种情况: 收货未完成,但不想再进行收货了,可以去…
随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在随着IT行业中大数据时代的到来,让我一起去拥抱大数据,闲言少叙,此处我们就列举一个最简单的场景,一个销售厂商根据以往的销售记录单,通过数据挖掘技术预测出一份可能会购买该厂商产品的客户名单,我相信这也是很多销售机构想要…
Python数据挖掘之决策树DTC数据分析及鸢尾数据集分析 今天主要讲述的内容是关于决策树的知识,主要包括以下内容:1.分类及决策树算法介绍2.鸢尾花卉数据集介绍3.决策树实现鸢尾数据集分析.希望这篇文章对你有所帮助,尤其是刚刚接触数据挖掘以及大数据的同学,同时准备尝试以案例为主的方式进行讲解.如果文章中存在不足或错误的地方,还请海涵~ 一. 分类及决策树介绍 1.分类         分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 为了区分红蓝模块,先将能分的先划分开来(中间的红线,分为了一遍全蓝),然后再来细分(绿线). 决策树优势:为什么业务人喜欢,可以给你决策场景,因为模型可视化高,可以讲故事. 一.起源 最早的决策树算法起源于CLS(Concept Learning System)系统,即概念学习系统.它是最早的决策…
决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(…
看了<从数据角度解析福州美食>后难免心痒,动了要分析合肥餐饮业的念头,因此特地写了Node.js爬虫爬取了合肥的大众点评数据.分析数据库我并没有采用MySQL而是用的MongoDB,是因为爬取的数据存在字段缺失的情况(schema不一致). 1. 数据准备 MongoDB简介 不同于MySQL,MongoDB是一种Schema-less的NoSQL数据库:与ElasticSearch类似,最小存储单元Document为BSON object.MySQL与MongoDB的基本概念对比: MySQ…