np.meshgrid】的更多相关文章

1. tf.image.resize_and_crop(net, bbox, 256, [14, 14], name)  # 根据bbox的y1,x1,y2,x2获得net中的位置,将其转换为14*14,因此为[14, 14, 512], 256表示转换的个数,最后的维度为[256, 14, 14, 512] 参数说明:net表示输入的卷积层,bbox表示y1,x1,y2, x2的比例,256表示转换成多少个,[14, 14]表示转换的卷积,name表示名字 2. tf.slice(x, [0,…
A,B,C,D,E,F是6个网格点,坐标如图,如何用矩阵形式(坐标矩阵)来批量描述这些点的坐标呢?答案如下 这就是坐标矩阵——横坐标矩阵X XX中的每个元素,与纵坐标矩阵Y YY中对应位置元素,共同构成一个点的完整坐标.如B点坐标(X12,Y12)=(1,1) 语法:X,Y = numpy.meshgrid(x, y)输入的x,y,就是网格点的横纵坐标列向量(非矩阵)输出的X,Y,就是坐标矩阵. stack()函数 函数原型为:stack(arrays, axis=0),arrays可以传数组和…
1. np.c[a, b]  将列表或者数据进行合并,我们也可以使用np.concatenate 参数说明:a和b表示输入的列表数据 2.np.linspace(0, 1, N) # 将0和1之间的数分成N份 参数说明:0表示起始数据,1表示末尾数据,N表示生成的分数 3.xx, yy = np.meshgrid(np.arange(x.min(), x.max(), N), np.arange(y.min(), y.max(), N))  对数据进行切分后,生成二维数据点 参数说明:np.ar…
生成网格坐标,一个很好的说明图如下: 虽然xy双坐标比较常用,但实际上其输入可以是任意多的数组,输出数组数目等于输出数组数目,且彼此间shape一致. 如果输入数组不是一维的,会拉伸为1维进行计算. 输出维度:[len(x2), len(x1), len(x3)……]…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…
经常遇到meshgrid,一段时间不用就忘记了,记录之 meshgrid用于生成网格点的坐标矩阵(参考https://blog.csdn.net/lllxxq141592654/article/details/81532855) 例如: x = np.array([0, 1]) y = np.array([0, 1, 2])grid = np.meshgrid(x,y) grid = [array([[0, 1],       [0, 1],       [0, 1]]), array([[0,…
np.ogrid: address:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ogrid.html returns an open (i.e. not fleshed out) mesh-grid when indexed, only one dimension of each returned array is greater than 1. The dimension and number of the output…
numpy提供的numpy.meshgrid()函数可以让我们快速生成坐标矩阵X,Y 语法:X,Y = numpy.meshgrid(x, y)输入:x,y,就是网格点的横纵坐标列向量(非矩阵)输出:X,Y,就是坐标矩阵. import numpy as np import matplotlib.pyplot as plt x = np.array([0, 1, 2]) y = np.array([0, 1]) X, Y = np.meshgrid(x, y) print(X) print(Y)…
meshgrid的目的是生成两套行列数一致的矩阵,其中一个是行重复,一个是列复制:可以这么来理解,通过ravel()将矩阵数据拉平之后,就可以将这两套矩阵累加在一起,形成一个两行数据,要达到这个效果是需要行列相同,这样就能够理解meshgrid行为了. 比如下面的数据,是原始的两个数组: t01: array([1., 2., 3.]) t02: array([4., 5.]) 经过了一些meshgrid的处理之后,形成了两个矩阵: ++++++++++++ t1 ++++++++++++ ar…