使用ML.NET建立PCB加投率模型对单一蚀刻工序进行加投率预测, 此实例为最简单预测,要想实现全流程加投率预测挑战难度还是挺大的,可以查看另一种关于大数据在PCB行业应用---加投率计算基本原理:PCB 加投率计算实现基本原理--K最近邻算法(KNN)   一.PCB加投数据结构 建立数据结构,蚀刻工序影响报废的的关键参数,铜厚.线宽公差.最小线宽.最小线距(实际影响参数会更多) /// <summary> /// PCB加投模型样本数据结构(此为演示结构并非真实加投模型结构)--蚀刻工序…
PCB行业中,客户订购5000pcs,在投料时不会直接投5000pcs,因为实际在生产过程不可避免的造成PCB报废, 所以在生产前需计划多投一定比例的板板, 例:订单 量是5000pcs,加投3%,那就是总共投料要投料5000*1.03=5150pcs. 而这个多投的订单标准,每家工厂都可能不一样的,因为加投比例,需要结合订单数量,层数,铜厚,线宽,线距, 表面工艺,HDI阶数,孔径比,特殊工艺,验收标准等等 ,所以工艺难度越大,加投量也是越多. 在这里以K最近邻算法(KNN)进行加投率的模似…
本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用Spark进行大数据分析 实现机器学习算法 学习使用NumPy库处理数值数据 学习使用Pandas库进行数据分析 学习使用Matplotlib库进行Python绘图 学习使用Seaborn库进行统计绘图 使用Plotly库进行动态可视化 使用SciKit-learn处理机器学习任务 K-Means聚…
一.前言及简单介绍 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG9uZ2Vyem9uZQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt=""> 听到"派"或者是看到这幅图片.难免让你想到眼下大名鼎鼎的"树莓派". 而香蕉派(Banana Pi. 论坛上也有人称它香蕉…
python系列均基于python3.4环境 ---------@_@? -------------------------------------------------------------------- 提出问题:如何简单抓取一个网页的源码 解决方法:利用urllib库,抓取一个网页的源代码 ------------------------------------------------------------------------------------ 代码示例 #python3.…
简介 ASP .NET SignalR[1]  是一个ASP .NET 下的类库,可以在ASP .NET 的Web项目中实现实时通信.什么是实时通信的Web呢?就是让客户端(Web页面)和服务器端可以互相通知消息及调用方法,当然这是实时操作的. 1.环境部署 首先新建一个mvc项目,通过Nuget获取相应SignalR包.使用Nuget的命令模式,直接输入 Install-Package Microsoft.AspNet.SignalR -Version 1.0.1 由于最新版本需要Net Fr…
文档数据库RavenDB-介绍与初体验 阅读目录 1.RavenDB概述与特性 2.RavenDB安装 3.C#开发初体验 4.RavenDB资源 不知不觉,“.NET平台开源项目速览“系列文章已经15篇了,每一篇都非常受欢迎,可能技术水平不高,但足够入门了.虽然工作很忙,但还是会抽空把自己知道的,已经平时遇到的好的开源项目分享出来.今天就给大家介绍.NET平台下的文档型数据库RavenDB,虽然我以前也在小项目用过其他文档型数据库,但问题很多,小项目还可以,大项目就歇菜了.这个数据库我关注了很…
一.简介 TensorFlow时谷歌于2015年11月宣布在Github上开源的第二代分布式机器学习系统,目前仍处于快速开发迭代中,有大量的新功能新特性在陆续研发中: TensorFlow既是一个实现机器学习算法的接口,同时也是执行机器学习算法的框架.它的前端支持Python.C++.Go.Java等多种开发语言,后端使用C++.CUDA等编写,其实现的算法可以在很多不同的系统上进行移植,虽然TensorFlow主要用来执行的是深度学习算法,但其也可以用来实现很多其他算法,诸如线性回归.逻辑回归…
Kaggle初体验之泰坦尼特生存预测 学习完了决策树的ID3.C4.5.CART算法,找一个试手的地方,Kaggle的练习赛泰坦尼特很不错,记录下 流程     首先注册一个账号,然后在顶部菜单栏Competitions里面搜索Titanic,找到Titanic练习赛,练习赛就用用于帮助新手入门的,在比赛的页面有很多的入门推荐,很值得去一看. 获取数据集 探索数据集 清洗数据集 特征选择 训练数据集 预测数据集 提交结果文件 获取数据集     数据集在比赛面板菜单栏的Data里面,有三个数据集…
下载Fasion-MNIST数据集 Fashion-MNIST是一个替代原始的MNIST手写数字数据集的另一个图像数据集. 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供.其涵盖了来自10种类别的共7万个不同商品的正面图片.Fashion-MNIST的大小.格式和训练集/测试集划分与原始的MNIST完全一致.60000/10000的训练测试数据划分,28x28的灰度图片.你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码. Fashion-MNIST 数…