DCGAN in Tensorflow生成动漫人物】的更多相关文章

引自:GAN学习指南:从原理入门到制作生成Demo 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversaria…
0902-用GAN生成动漫头像 目录 一.概述 二.代码结构 三.model.py 3.1 生成器 3.2 判别器 四.参数配置 五.数据处理 六.训练 七.随机生成图片 八.训练模型并测试 pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html 一.概述 本节将通过 GAN 实现一个生成动漫人物头像的例子. 在日本的技术博客网站上有个博主,利用 DCGAN 从 20 万张动漫头像中学习,最终能够利用程序自动生成动漫头像…
整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master 代码与上篇唐诗生成基本一致,不做过多解释.详细解释,请看:Tensorflow生成唐诗和歌词(上) 歌词生成 一.读取歌词的数据集(lyrics.py) import collections import os import sys import numpy as np from utils.cle…
整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master 唐诗生成 一.读取诗的数据集(poems.py) import collections import os import sys import numpy as np import codecs start_token = 'G' end_token = 'E' def process_poems(…
1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflow的Estimator实践原理 1. 前言 TFRecord是TensorFlow官方推荐使用的数据格式化存储工具,它不仅规范了数据的读写方式,还大大地提高了IO效率. 2. TFRecord原理步骤 TFRecord内部使用了"Protocol Buffer"二进制数据编码方案,只要生成…
原文:https://www.cnblogs.com/nowornever-L/p/6991295.html 1. TensorFlow  生成的  .ckpt 和  .pb 都有什么用? The .ckpt is the model given by tensorflow which includes all the weights/parameters in the model. The .pb file stores the computational graph. To make ten…
『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算图效果以及实际代码实现 计算图效果 实际模型实现 相关介绍移步我的github项目. 二.生成器与判别器设计 生成器 相关参量, 噪声向量z维度:100 标签向量y维度:10(如果有的话) 生成器features控制参量gf标量值:64 生成器features控制参量gfc标量值:1024 无标签训练, 1…
上一节我们提到G和D由多层感知机定义.深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一.源码:https://github.com/Newmu/dcgan_code .DCGAN论文作者用theano实现的,他还放上了其他人实现的版本,本文主要讨论tensorflow版本.  TensorFlow版本的源码:https://github.com/carpedm20/DCGAN-tensorflow DCGAN把上述的G和D换成了两个卷积神…
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None)</span> . shape:一个一维整数张量或Python数组.代表张量的形状. mean:数据类型为dtype的张量值或Python值.是正态分布的均值. std…
tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None) shape:一个一维整数张量或Python数组.代表张量的形状.mean:数据类型为dtype的张量值或Python值.是正态分布的均值.stddev:数据类型为dtype的张量值或Python值.是正态分布的标准差dtype: 输出的数据类型.seed:一个Python整数.是随机种…