1. cv2.imread('cat.jpg', cv2.IMGREAD_GRAYSCALE)  # 使用imread读入图像(BGR顺序), 使用IMGREAD_GRAYSCALE 使得读入的图片为灰度图, 2. cv2.imshow('cat', img)  # imshow表示展示图片,第一个参数表示图片的名字, 第二个参数表示需要显示的图片 3. cv2.waitKey(0)  #表示图片停留的时间, 0表示按任意键退出 4.cv2.destroyAllWindows()  #表示清除所…
1.cv2.drawMatches(imageA, kpsA, imageB, kpsB, matches[:10], None, flags=2)  # 对两个图像关键点进行连线操作 参数说明:imageA和imageB表示图片,kpsA和kpsB表示关键点, matches表示进过cv2.BFMatcher获得的匹配的索引值,也有距离, flags表示有几个图像 书籍的SIFT特征点连接: 第一步:使用sift.detectAndComputer找出关键点和sift特征向量 第二步:构建BF…
1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kpA, kpB, cv2.RANSAC, reproThresh) # 计算出单应性矩阵 参数说明:kpA表示图像A关键点的坐标, kpB图像B关键点的坐标, 使用随机抽样一致性算法来进行迭代,reproThresh表示每次抽取样本的个数 3.cv2.warpPespective(imageA, H,…
1,计算机眼中的图像 我们打开经典的 Lena图片,看看计算机是如何看待图片的: 我们点击图中的一个小格子,发现计算机会将其分为R,G,B三种通道.每个通道分别由一堆0~256之间的数字组成,那OpenCV如何读取,处理图片呢,我们下面详细学习. 2,图像的加载,显示和保存 我们看看在OpenCV中如何操作: import cv2 # 生成图片 img = cv2.imread("lena.jpg") # 生成灰色图片 imgGrey = cv2.imread("lena.j…
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch. 搭建SSD的项目,可以分成以下三个部分: 数据读取: 网络搭建: 损失函数的构建: 网络测试. 接下来,本篇博客重点分析数据读取. 一.整体框架 SSD的数据读取环节,同样适用于大部分目标检测的环节,具有通用性.为了方便理解,本项目以V…
1.cv2.add(dog_img, cat_img)  # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, 414))  # 根绝给定的维度进行变化   cv2.resize(img, (0, 0), fx=3, fy=1)  使得图像x轴变化为原来的三倍,y轴不变 参数说明:img表示需要变化的图片, (500, 414)表示变化的维度,长为414, 宽为500, fx=3, fy=1, 表示对图像的x…
1.cv2.copyMakeBoder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REPLICATE) 参数说明: img表示需要补零的图片, top_size, bottom_size, left_size, right_size表示需要补零的尺寸, cv2.BORDER_REPLICATE表示补零的方式,这个是复制 2. 补零的方式说明 cv2.BORDER_REPLICATE: 进行复制的补零操作, 只对边缘…
1.cv2.cornerHarris(gray, 2, 3, 0.04)  # 找出图像中的角点 参数说明:gray表示输入的灰度图,2表示进行角点移动的卷积框,3表示后续进行梯度计算的sobel算子的大小,0.04表示角点响应R值的α值 角点检测:主要是检测一些边角突出来的点,对于A和B这样的面上的点而言,一个卷积框在上面移动,框中的基本像素点不发生变化, 对于像C和D边界点,只有x或者y轴方向上的平移,像素框内的像素会发生偏移,而对于E和F这样的角点而言,不管是像x轴或者向y轴平移,像素框内…
1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 2. np.fft.fftshift(img)  将图像中的低频部分移动到图像的中心 参数说明:img表示输入的图片 3. cv2.magnitude(x, y) 将sqrt(x^2 + y^2) 计算矩阵维度的平方根 参数说明:需要进行x和y平方的数 4.np.fft.ifftshift(img…
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, transform_axes表示变换后四个角的位置 2.cv2.warpPerspective(gray, H, (width, height)) 根据H获得变化后的图像 参数说明: gray表示输入的灰度图像, H表示变化矩阵,(width, height)表示变换后的图像大小3. cv2.approx…