来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以把每个样本看做一个特征向量: cvSeqPush( seq, el_ptr );读入序列seq中,每一项都存储一个样本即特征向量: 之后,把特征向量与标志位分别读入CvMat* data与CvMat* reponses中 还有一个CvMat* missing保留丢失位当前小于0位置: 2.训练样本…
源码细节: ● 训练函数 bool CvRTrees::train( const CvMat* _train_data, int _tflag,                        const CvMat* _responses, const CvMat* _var_idx,                        const CvMat* _sample_idx, const CvMat* _var_type,                        const CvMa…
OpenCV2.3中Random Trees(R.T.)的继承结构: API: CvRTParams 定义R.T.训练用参数,CvDTreeParams的扩展子类,但并不用到CvDTreeParams(单一决策树)所需的所有参数.比如说,R.T.通常不需要剪枝,因此剪枝参数就不被用到.max_depth  单棵树所可能达到的最大深度min_sample_count  树节点持续分裂的最小样本数量,也就是说,小于这个数节点就不持续分裂,变成叶子了regression_accuracy  回归树的终…
0. 算法概述 决策树(decision tree)是一种基本的分类与回归方法.决策树模型呈树形结构(二分类思想的算法模型往往都是树形结构) 0x1:决策树模型的不同角度理解 在分类问题中,表示基于特征对实例进行分类的过程,它可以被看作是if-then的规则集合:也可以被认为是定义在特征空间与类空间上的条件概率分布 1. if-then规则集合 决策树的属性结构其实对应着一个规则集合:由决策树的根节点到叶节点的每条路径构成的规则组成:路径上的内部特征对应着if条件,叶节点对应着then结论. 决…
一 决策树 原理:分类决策树模型是一种描述对实例进行分类的树形结构.决策树由结点(node)和有向边(directed edge)组成.结点有两种类型:内部结点(internal node)和叶结点(leaf node).内部结点表示一个特征或属性,叶结点表示一个类.而最上面的结点就是决策树的根结点(root node). 决策树(decision tree)是一种基本的分类与回归方法,上图就是一个决策树. 长方形:decision block  判断模块 椭圆:terminating bloc…
基本流程 决策树是通过分次判断样本属性来进行划分样本类别的机器学习模型.每个树的结点选择一个最优属性来进行样本的分流,最终将样本类别划分出来. 决策树的关键就是分流时最优属性$a$的选择.使用所谓信息增益$Gain(D,a)$来判别不同属性的划分性能,即划分前样本类别的信息熵,减去划分后样本类别的平均信息熵,显然信息增益越大越好: $\text{Ent}(D)=-\sum\limits_{k=1}^{|\mathcal{Y}|}p_k\log_{2}p_k$$\displaystyle\text…
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Python(24)  Machine Learning(46)  版权声明:本文为博主原创文章,未经博主允许不得转载. 本文基于python逐步实现Decision Tree(决策树),分为以下几个步骤: 加载数据集 熵的计算 根据最佳分割feature进行数据分割 根据最大信息增益选择最佳分割feat…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…
[机器学习]决策树(decision tree) 学习笔记 标签(空格分隔): 机器学习 决策树简介 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别.使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果. 本文采用的是ID3算法,ID3算法就是在每次需要分裂时,计算每…