论文可以在arxiv下载,老板一作,本人二作,也是我们实验室第一篇CCF A类论文,这个方法我们称为TFusion. 代码:https://github.com/ahangchen/TFusion 解决的目标是跨数据集的Person Reid 属于无监督学习 方法是多模态数据融合 + 迁移学习 实验效果上,超越了所有无监督Person reid方法,逼近有监督方法,在部分数据集上甚至超越有监督方法 本文为你解读CVPR2018 TFusion 转载请注明作者梦里茶 Task 行人重识别(Pers…
Stat/Transfer:在电子表格(worksheet),数据库(database),统计包(statistical package)间进行数据转换,具有简单高效的特点. 资料来源于:http://www.stattransfer.com/,浏览该网页,可以下载StatTransfer 12这个软件.总体而言,就是把不同格式的数据进行转换.…
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py 目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载 详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr20…
Unsupervised Learning: Use Cases Contents Visualization K-Means Clustering Transfer Learning K-Nearest Neighbors The features learned by deep neural networks can be used for the purposes of classification, clustering and regression. Neural nets are s…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1. <Efficient Visual Event Detection using Volumetric Features> ICCV 2005 扩展2D box 特征到3D时空特征. 构建一个实时的检测器基于容积特征. 采用传统的兴趣点方法检测事件. 2. <ARMA-HMM: A New…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
About this Course This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good res…
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer format than this) maintained by @karpathy NEW: This year I also embedded the (1,2-gram) tfidf vectors of all papers with t-sne and placed them in an interf…
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领域,如军事,进入,公共安全和日常生活.FR自然在CVPR会议中也占据了十分长的时间.早在1990年代,随着特征脸的提出[157],FR就成为了一个比较热门的研究领域.过去基于特征进行FR的里程碑方法在图1中有所展示 如图1所示,其中介绍了4个主流技术的发展过程: holistic 方法:通过某种分布假设去直接…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Generalization How can you get better performance from your deep learning model? It is one of the most common questions I get asked. It might be asked as: H…
Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability 128 Video Registration to SfM Models 168 Image-based 4-d Modeling Using 3-d Change Detect…
ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Workshop Track Submitted Papers Stochastic Gradient Estimate Variance in Contrastive Divergence and Persistent Contrastive Divergence Mathias Berglund, Ta…
Contents [hide] 1 Audio Classification (Test/Train) tasks 1.1 Description 1.1.1 Task specific mailing list 1.2 Data 1.2.1 Audio Classical Composer Identification 1.2.2 Audio US Pop Music Genre Classification 1.2.3 Audio Latin Music Genre Classificati…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
生物医学命名实体识别(BioNER)研究进展 最近把之前整理的一些生物医学命名实体识别(Biomedical Named Entity Recognition, BioNER)相关的论文做了一个BioNER Progress放在了github(https://github.com/lingluodlut/BioNER-Progress)上.主要内容包括BioNER进展中的代表论文列表,以及目前各个主要数据集上的一些先进结果和相关论文,希望对入门的同学有所帮助. 论文列表首先给出一些综述论文,然后…
About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Network In Network) [中文译名] 网络中的网络 [论文链接]https://arxiv.org/abs/1312.4400 [补充] 1)NIN结构的caffe实现: 因为我们可以把全连接层当作为特殊的卷积层,所以呢, NIN在caffe中是非常 容易实现的: https://githu…
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set 03 Transforming Samples from Similar Data Sets Discussion and Summary 原文链接:小样本学习与智能前沿 上一篇:A Survey on Few-Shot Learning | Intro…
There are a number of algorithms that are typically used for system identification, adaptive control, adaptive signal processing, and machine learning. These algorithms all have particular similarities and differences. However, they all need to proce…
动人的DL我们有六个月的时间,积累了一定的经验,实验,也DL有了一些自己的想法和理解.曾经想扩大和加深DL相关方面的一些知识. 然后看到了一个MIT按有关的对出版物DL图书http://www.iro.umontreal.ca/~bengioy/dlbook/,所以就有了读一下这本书然后做点笔记攒点知识量的念头.这一系列的博客将是笔记型的,有什么写的不好之处还望广大博友见谅,也欢迎各位同行能指点一二. 这是本书的第一章,下面是个人感觉蛮重要的一些点: logistic regression ca…
论文地址:Video2GIF: Automatic Generation of Animated GIFs from Video 视频的结构化分析是视频理解相关工作的关键.虽然本文是生成gif图,但是其中对场景RankNet思想值得研究. 文中的视频特征表示也是一个视频处理值得学习的点.以前做的视频都是基于单frame,没有考虑到时空域,文中的参考文献也值得研读一下. 以下是对本文的研读,英语水平有限,有些点不知道用汉语怎么解释,直接用的英语应该更容易理解一些. Abstract 从源视频当中提…
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
Extracting knowledge from knowledge graphs using Facebook Pytorch BigGraph 2019-04-27 09:33:58 This blog is copied from: https://towardsdatascience.com/extracting-knowledge-from-knowledge-graphs-e5521e4861a0 Machine learning gives us the ability to t…
Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog is copied from: https://github.com/borisbanushev/stockpredictionai In this notebook I will create a complete process for predicting stock price moveme…
程明明(南开大学):面向开放环境的自适应视觉感知 (图片来自valse2019程明明老师ppt) 面向识别与理解的神经网络共性技术 深度神经网络通用架构 -- VggNet(ICLR'15).ResNet(CVPR'16).DenseNet(CVPR'17).DLA(CVPR'18).Res2Net()富尺度空间的深度神经网络通用架构 富尺度空间的深度神经网络通用架构 网络结构: 应用:检测任务.分类任务.分割任务 通用视觉基元属性感知 显著性物体检测技术 A Simple Pooling-Ba…
[原文链接] Background removal with deep learning   This post describes our work and research on the greenScreen.AI. We’ll be happy to hear thoughts and comments! Intro Throughout the last few years in machine learning, I’ve always wanted to build real ma…