Learn2Rank】的更多相关文章

Learning to rank 排序学习是推荐.搜索.广告的核心方法.排序结果的好坏很大程度影响用户体验.广告收入等.排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做了很好的阐述和总结.我这里是一个超级精简版. 排序学习是一个有监督的机器学习过程,对每一个给定的查询-文档对,抽取特征,通过日志挖掘或者人工标注的方法获得真实数据标注…
大家一定不会多搜索引擎感到陌生,搜索引擎是互联网发展的最直接的产物,它可以帮助我们从海量的互联网资料中找到我们查询的内容,也是我们日常学习.工作和娱乐不可或缺的查询工具.之前本人也是经常使用Google和Baidu搜索,而对搜索引擎的知识架构没有一个整体的概念.前一阵子的实习,使我有机会全面的了解了搜索引擎,感觉还是蛮有意思.所以,即使在面临找工作的高压下,也一定要抽时间来总结和回顾一下学到的知识,以便以后查阅,如果能给其他人带来帮助,那最好不过了. 搜索引擎的标准定义:搜索引擎(Search…
learn2rank目前基本两个分支,1是神经网络学派ranknet,lamdarank,另一个是决策树学派如gbrank,lamdamart 05年提出ranknet,算分模块是简单的全连接网络,loss函数是预测概率之家的pair-wise关系和真实lablel的pair-wise关系的逻辑回归. 预测概率的pair-wise关系是两个相减然后求个sigmoid,如下图: 真实概率如下)(S_ij表示,i 比 j 相关,S_ij是1,反之是 -1,如果label一样是0): 最后的loss是…