一.概述 FRTO虚假超时重传检测我们之前重传章节的文章已经介绍过了,这里不再重复介绍,针对后面的示例在说明两点 1.FRTO只能用于虚假超时重传的探测,不能用于虚假快速重传的探测. 2.延迟ER重传触发的进入Recovery状态时候,并不会立即更新cwnd. 本篇在演示FRTO的同时,还会涉及到ER超时重传.TLP探测.SACK关闭场景下的拥塞撤销,后面或者前面都会有针对这些场景的专门介绍文章. 一.wireshark示例 1.FRTO与ER 我们通过一个示例看一下关闭SACK时候,tcp_s…
一.拥塞控制的相关算法 早期的TCP协议只有基于窗口的流控(flow control)机制而没有拥塞控制机制,因而易导致网络拥塞.1988年Jacobson针对TCP在网络拥塞控制方面的不足,提出了"慢启动(Slow Start)"和"拥塞避免(Congestion Avoidance)"算法.1990年Jacobson又做了两个修正.在这二十来年的发展过程中,与拥塞控制相关的有四个比较重要的版本:TCP Tahoe.TCP Reno.TCP NewReno和TCP…
一.概述 这篇文章介绍一下TCP从Recovery状态恢复到Open状态的时候cwnd的更新.我们在tcp重传部分的文章中曾经介绍过虚假重传的概念,Linux在探测到虚假重传的时候就会执行拥塞撤销操作.所谓的拥塞撤销是指撤销虚假的快速重传或者RTO超时重传对拥塞窗口的影响.有多种方法可能会触发拥塞撤销如前面介绍的DSACK和FRTO以及后面要介绍的Eifel算法以及本文介绍的SACK关闭场景下的拥塞撤销,本文先介绍一种SACK关闭场景下的拥塞撤销.首先在介绍几个新的linux状态变量 undo_…
一.概述 我们之前在SACK关闭场景下的拥塞撤销那篇文章中提到过Eifel探测算法(Eifel Detection Algorithm),最早在介绍DSACK和FRTO的时候我们就有提到过Eifel探测算法.Eifel探测算法是基于TSopt选项中TSV的单调非减特性设计的.简单介绍一下Linux中Eifel探测算法的实现,Linux会在TCP进行第一次重传的时候把重传数据包的TSV记录在状态变量retrans_stamp中,当收到partial ACK的时候,或者收到的Ack报文的ack nu…
一.概述 DSACK下的虚假重传的检测我们之前重传部分的文章已经介绍过了,这里简单说一下拥塞控制部分的实现. linux内部会维护一个undo_retrans状态变量,其值为已经重传的次数减掉被DSACK检测到的虚假重传的次数,例如当前总共重传了5个数据包,DSACK检测到3个虚假重传,那么undo_retrans即为2.undo_retrans初始化为-1,当发生重传的时候,如果undo_retrans为-1那么就更新undo_retrans=1,否则更新undo_retrans=undo_r…
前面我们演示分析了100+个wireshark TCP实例,拥塞控制部分也介绍常见的拥塞处理场景以及4种拥塞撤销机制,但是我们一直使用的都是reno拥塞控制算法.实际上拥塞控制发展到今天已经有了各种各样的拥塞控制算法,而且普遍认为单纯基于丢包的reno拥塞控制算法已经不适应当前internet网络了,最近谷歌又折腾出了一个BBR拥塞控制算法,对比国内,还没有一个在TCP领域有突出贡献的公司,谷歌在TCP领域真是甩了其他公司好几条街.闲言少叙吧,拥塞控制关注的Scalability.RTT fai…
一.概述 1.SACK下的特殊处理过程 SACK下的拥塞控制处理是linux中拥塞控制的实现依据,再次强调一遍RFC6675的重要性,linux中拥塞控制主体框架的实现是与RFC6675一致的,所以如果要理解linux中拥塞控制的实现,强烈建议看一下RFC6675.我这里给出RFC6675中SACK处理的2个关键点,下面的描述实际上不太严谨,严谨定义请参考RFC6675. 1.SACK下对于dup ACK的定义简单说是指反馈了新的SACK信息,也就是说SACK下ack number不同的ACK报…
一.Linux中的慢启动和拥塞避免 Linux中采用了Google论文的建议把IW初始化成了10了.在linux中一般有三种场景会触发慢启动过程 1.连接初始建立发送数据的时候,此时cwnd初始化为10,ssthresh初始化为0x7fffffff,因此会触发慢启动.但是当路由表中有对应的设置的时候,cwnd和ssthresh会被路由表中的设置的值覆盖,有可能连接建立后直接进入拥塞避免阶段. 2.RTO超时进入Loss状态后,此时cwnd初始化为1,ssthresh的值会调用具体拥塞控制算法的回…
在本篇中我们继续上一篇文章wireshark的示例讲解,上一篇介绍了一个综合示例后,本篇介绍一些简单的示例,在读本篇前建议先把上一篇读完,为了节省篇幅,本篇只针对一些特殊的场景点报文进行讲解,不会像上一篇一样对每个报文都进行讲解并随报文更新相关状态变量的值了. 一.wireshark示例 本篇示例的TCP测试仍然设置初始拥塞窗口为3,并关闭TSO.GSO等功能.同时设置wireshark使其不在info列显示TSopt的信息. ******@Inspiron:~$ sudo ip route a…
本篇中先介绍一下慢启动和拥塞避免的大概过程,下一篇中将会给出多个linux下reno拥塞控制算法的wireshark示例,并详细解释慢启动和拥塞避免的过程. 一.慢启动(slow start) 一个TCP连接启动的时候并不知道cwnd应该取多大的值适合当前的网络状况,因此TCP发送方会从一个较小的初始值指数抬升cwnd到某一个值,这个cwnd抬升的过程就叫做慢启动.除了初始建立tcp连接(SYN包交换后)后的数据发送使用慢启动外,在TCP超时重传.TCP空闲一段时间后重新开始数据发送这些场景下也…
一.概述 FACK下的重传我们在之前的重传部分已经进行了介绍,这里简单介绍一下随着FACK提出的拥塞控制算法的改进及随后的进一步改进. 从我们之前介绍的RFC2582和RFC5681中可以看到,快速恢复下当探测到丢包的时候,会设置ssthresh = max (FlightSize / 2, 2*MSS). cwnd=ssthresh+3*MSS,随后发送端收到dup ACK的时候进行cwnd的inflate过程,发送端需要收到大约一半的dup ACK后,才能允许发送新数据,这意味着发送端需要等…
) return;    delta = ssthresh - in_flight;     prr_delivered += newly_acked_sacked; if (delta < 0) {  //注意下面的除法要向下取整 sndcnt = (ssthresh * prr_delivered + prior_cwnd - 1)/prior_cwnd - prr_out } else if (ack number新确认了之前重传的数据且RACK没有标记重传报文丢失) { sndcnt =…
一.概述 ECN的相关内容是在RFC3168中定义的,这里我简单描述一下RFC3168涉及的主要内容. 1.AQM和RED 目前TCP中多数的拥塞控制算法都是通过缓慢增加拥塞窗口直到检测到丢包来进行慢启动的,这就会导致数据包在路由器缓存队列堆积,当路由器没有复杂的调度和缓存管理策略的时候,路由器一般简单的按照先进先出(FIFO)方式处理数据包,并在缓存队列满的时候就会丢弃新数据包(drop tail),这种FIFO/drop tail的路由器称为passive路由器,会导致多个TCP流同时检测到…
一.概述 这里主要简单分析一个丢包重传并恢复的场景,通过不同的设置让这个相同的场景分别触发RACK重传和前向重传,通过对比说明以下问题: Forward Retransmit可以产生只有重传标记的数据包,也可以产生同时具有重传标记和SACK标记的数据包,注意这里说的这些数据包是没有Lost标记的,这是前向重传与之前介绍的快速重传及其变种的差异,进而会对in_flight的统计产生影响. Recovery状态,FACK会利用一个dup ACK来前向标记丢失的数据包. RACK可以利用重传在时间域来…
一.概述 这里的重点是介绍TLP.ER与拥塞控制并不是介绍TLP和ER本身,因此TLP和ER的详细内容请翻前文. 在TLP与拥塞控制的交互中有几个点需要注意 1.TLP触发的重传后,TCP仍然处于Open状态,TLP重传也不会更新lost_out等状态变量,TLP重传发出的是探测报文并不是因为当前确定丢包而重传. 2.TLP与ER/FACK是相互组合的,TLP触发的FACK重传与之前介绍的FACK下快速恢复一致.TLP和ER的耦合更深一些,TLP只能触发延迟ER,而ER定时器超时,延迟ER重传将…
一.概述 在RFC2861中,区分了TCP连接数据传输的三种状态   After sending a data segment:       If tcpnow - T_last >= RTO           (The sender has been idle.)           ssthresh =  max(ssthresh, 3*cwnd/4)           For i=1  To (tcpnow - T_last)/RTO               win =  min(…
在本篇中我们继续上一篇文章wireshark的示例讲解,上一篇介绍了一个综合示例后,本篇介绍一些简单的示例,在读本篇前建议先把上一篇读完,为了节省篇幅,本篇只针对一些特殊的场景点报文进行讲解,不会像上一篇一样对每个报文都进行讲解并随报文更新相关状态变量的值了. 一.wireshark示例 本篇示例的TCP测试仍然设置初始拥塞窗口为3,并关闭TSO.GSO等功能.同时设置wireshark使其不在info列显示TSopt的信息. ******@Inspiron:~$ sudo ip route a…
一.介绍 Tail Loss Probe (TLP)是同样是一个发送端算法,主要目的是使用快速重传取代RTO超时重传来处理尾包丢失场景.在一些WEB业务中,如果TCP尾包丢失,如果依靠RTO超时进行重传会带来比较大的延迟,进而影响用户体验.如果一个TCP连接没有在一段时间内没有收到ACK报文,TLP会强制传输还没有收到ACK确认的报文里面的最后一个报文或者未发送的新报文(传输的这个报文就叫做loss probe).这里强制传输是指loss probe的发送不受到拥塞控制的限制但是同样收到对方通告…
一.概述 我们之前介绍过rtt.ssthresh等变量,这些变量一般在TCP连接建立的时候有个初始值,然后随着TCP的数据交互逐渐调整到适应对应的网络状态的值.但是如果每次TCP建立连接都依靠默认初始值逐渐调整,那么可能需要一段时间才能调整到合适值,这显然会降低TCP性能,对于这种场景一种优化方案就是_cc/tcp17# ip route add local 127.0.0.2 dev lo congctl reno initcwnd 5  ssthresh lock 4   #设置后查看一下相…
一.TCP简单介绍 我们经常听人说TCP是一个面向连接的(connection-oriented).可靠的(reliable).字节流式(byte stream)传输协议,  TCP的这三个特性该怎么理解呢? 面向连接:在应用TCP协议进行通信之前双方通常需要通过三次握手来建立TCP连接,连接建立后才能进行正常的数据传输,因此广播和多播不会承载在TCP协议上.(谷歌提交了一个RFC文档,建议在TCP三次握手的过程允许SYN数据包中带数据,即 TFO(TCP Fast Open),目前ubuntu…
为了更好地对传输层进行拥塞控制,因特网建议标准定义了以下四种算法:慢启动.拥塞避免.快重传和快恢复. 1 接收窗口rwnd与拥塞窗口cwnd 发送方在确定发送报文段的速率时,既要根据接收方的接收能力,又要从全局考虑不要使网络发生拥塞.因为,TCP协议要求发送方维护以下两个窗口: (1)接收窗口rwnd:接收方向发送方告知的当前还能接收的数据容量,一般所说的窗口大小即rwnd: (2)拥塞窗口cwnd:发送方根据自己估算的网络拥塞程序而设置的窗口值,反映了网络的当前容量. 发送窗口的上限应当取接收…
  1. 流量控制 - Flow Control 序言:数据的传送与接收过程当中很可能出现收方来不及接收的情况,这时就需要对发方进行控制以免数据丢失.利用滑动窗口机制可以很方便的在TCP连接上实现对发送方的流量控制.TCP的窗口单位是字节,不是报文段,发送方的发送窗口不能超过接收方给出的接收窗口的数值. 说明:使发送方暂停发送的状态将持续到主机B重新发出一个新的窗口值为止.B向A发送的三个报文段都设置了ACK=1.   考虑一种特殊的情况,接收方若没有缓存足够使用,就会发送零窗口大小的报文,此时…
在这篇文章中我们看一下server端在接收到异常数据系列时的处理,主要目的是通过wireshark示例对这些异常数据系列的处理有一个直观的认识,感兴趣的自行阅读相关代码和协议,这里不再进行详细介绍 在进行下面的测试前,首先如下设置相关的参数,其中window参数指定了到127.0.0.2的tcp连接的最大接收窗口. root@Inspiron:/home/******/tcp12# ip route change local 127.0.0.2 dev lo window 40 一.wiresh…
一.TCP选项概述 在前面介绍TCP头的时候,我们说过tcp基本头下面可以带有tcp选项,其中有些选项只能在连接过程中随着SYN包发送,有些可以延后.下表汇总了一些tcp选项 其中我标记为红色的部分是常见的TCP选项,我们仅针对这些红色的TCP选项进行介绍(主要是非红色的我也不太了解~~~),另外RFC1323已经被RFC7323取代,这里给出的是TCP选项原始定义的RFC 按照RFC793规定,一个TCP选项只需要单字节对齐,但是在实现上一般是两字节对齐或者会通过NOP选项实现四字节对齐,例如…
TCP超时与重传机制 TCP协议是一种面向连接的可靠的传输层协议,它保证了数据的可靠传输,对于一些出错,超时丢包等问题TCP设计的超时与重传机制. 基本原理:在发送一个数据之后,就开启一个定时器,若是在这个时间内没有收到发送数据的ACK确认报文,则对该报文进行重传,在达到一定次数还没有成功时放弃并发送一个复位信号. 这里比较重要的是重传超时时间,怎样设置这个定时器的时间(RTO),从而保证对网络资源最小的浪费. 若RTO太小,可能有些报文只是遇到拥堵或网络不好延迟较大而已,这样就会造成不必要的重…
一.TCP连接的ISN         之前我们说过初始建立TCP连接的时候的系列号(ISN)是随机选择的,那么这个系列号为什么不采用一个固定的值呢?主要有两方面的原因 防止同一个连接的不同实例(different instantiations/incarnations of the same connection)的数据包混淆. 同一个连接的不同实例是怎么回事呢?之前我们说过(源IP.源端口号.目的地址.目的端口号)这个四元组唯一标识一个TCP连接,当一个TCP连接在经历四次挥手关闭时,假如有…
一.虚假重传 在一些情况下,TCP可能会在没有数据丢失的情况下初始化一个重传,这种重传就叫做虚假重传(Spurious retransmission).发生虚假重传的原因可能是包传输中重排序.传输中发生包复制.ACK确认包传输中丢失等等.如果由于链路时延变化或者负载变化等因素导致RTT突然变大等原因,TCP的发送端可能还没收到ACK确认包就已经RTO超时而触发重传,这种重传就叫做虚假超时重传(Spurious retransmission timeouts).虚假超时重传会降低网络性能,其主要由…
在最开始介绍TCP的时候,我们就介绍了TCP的三个特点,分别是面向连接.可靠.字节流式.前面内容我们已经介绍过了TCP的连接管理,接下来的这部分内容将会介绍与TCP可靠性强关联的TCP重传. 很多网络协议都提供了checksum或者CRC手段来检测收到的数据包是否发生错误,但是检测到数据包错误后很多协议都不会进行重传等操作来可靠的修复错误.例如常见的IP和UDP协议完全没有重传,对于链路层的以太网协议,虽然有重传操作但是尝试若干次重传还没有成功会也会放弃(CSMA/CD) 经过N多专家前扑后继的…
一.DSACK介绍 RFC2883通过指定使用SACK来指示接收端的重复包(duplicate packet)扩展了RFC2018对SACK选项的定义(SACK选项的介绍和示例参考前面内容).RFC2883建议在收到重复报文的时候,SACK选项的第一个块(这个块也叫做DSACK块)可以用来传递触发这个ACK确认包的系列号,这个就是DSACK(duplicate-SACK)功能.这样允许TCP发送端根据SACK选项来推测不必要的重传.进而利用这些信息在乱序传输的环境中执行更健壮的操作.这个DSAC…
拥塞: 拥塞发生的主要原因在于网络能够提供的资源不足以满足用户的需求,这些资源包括缓存空间.链路带宽容量和中间节点的处理能力.由于互联网的设计机制导致其缺乏"接纳控制"能力,因此在网络资源不足时不能限制用户数量,而只能靠降低服务质量来继续为用户服务,也就是"尽力而为"的服务. 拥塞其实是一个动态问题,我们没有办法用一个静态方案去解决,从这个意义上来说,拥塞是不可避免的. 重传机制: 重发定时器 (1) 每一次一个包含数据的包被发送(包括重发),如果该定时器没有运行则…