pandas nan值处理】的更多相关文章

创建DataFrame样例数据 >>> import pandas as pd >>> import numpy as np >>> data = pd.DataFrame({'a': [1, 2, 4, np.nan,7, 9], 'b': ['a', 'b', np.nan, np.nan, 'd', 'e'], 'c': [np.nan, 0, 4, np.nan, np.nan, 5], 'd': [np.nan, np.nan, np.nan…
症状:前向计算一切正常.梯度反向传播的时候就出现异常,梯度从某一层开始出现Nan值(Nan: Not a number缩写,在numpy中,np.nan != np.nan,是唯一个不等于自身的数). フォワードの計算に異常なしでも.その模型の変量をアプデートする時に異常な数字が出る.Pythonのプログラムにあるなら.Nanというもの現れることです. 根因:原因目前遇到的分为两种,其一——你使用了power(x, a) (a < 1)这样的算子,因为power函数这样的算子,在梯度反向传播阶段…
我发现在数据处理中非常常见的就是nan值的判断,筛选数据尤为常见, 判断数据是否为nan,前提是np.float类型数组,但在应用于对象数组时会引发TypeError # 返回bool类型 np.isnan(ndarray) 但是np没有直接提供给我们非nan的判断,起初我试了一试np.notnan(),然后发现np并没有替我们封装, 但是np有一个非常好用的特性也就是np.nan != np.nan 于是乎,我们可以这么写 # 返回bool类型 ndarray == ndarray…
    比如我们一组数据,里面有不少的NaN值,如何将其删除掉呢?可以通过find函数来搞定.     我们可以通过importdata('data.txt')将数据文件data.txt导入数组A中.                           A=importdata('data.txt')     然后通过命令                         z=find(~isnan(A))     将A数组中NaN所在的编号给找出来:                      …
本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import numpy as np dates = pd.date_range("2017-01-08", periods=6) data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A",…
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @File : s.py from scipy import linalg as lg #按标签选择 #通过标签选择多轴 import pandas as pd import numpy as np dates = pd.date_range(', periods=6) df = pd.DataFrame…
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/5/24 15:03 # @Author : zhang chao # @File : s.py from scipy import linalg as lg #按标签选择 #通过标签选择多轴 import pandas as pd import numpy as np dates = pd.date_range(', periods=8) df = pd.DataFrame…
import pandas as pd #生成数据 data1,data2,data3,data4=['a',3],['b',2],['a',3],['c',2] df=pd.DataFrame([data1,data2,data3,data4],columns=['col1','col2']) print(df) col1 col2 0 a 3 1 b 2 2 a 3 3 c 2 #判断数据 isDuplicated=df.duplicated() #判断重复数据记录 print(isDupl…
>> np.nan == np.nan False >> np.nan is np.nan True >> math.nan is np.nan False >> np.isnan(math.nan) True 1. 判断 ndarray 中是否存在 nan >> c = np.array([ 1., 2., np.nan, 3., 4.]) >> np.isnan(c) array([False, False, True, Fals…
1.创建数据 >>> dates = pd.date_range(', periods=6) >>> df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) >>> print(df) A B C D 2013-01-01 0 1 2 3 2013-01-02 4 5 6 7 2013-01-03 8 9 10 11 2013-01-0…