2888: 资源运输 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 63  Solved: 33[Submit][Status][Discuss] Description        小Y盯上了最近发行的即时战略游戏——ResourceTransport.但在前往通关之路的道路上,一个小游戏挡住了小Y的步伐.“国家的本质是生产与收集资源”是整款游戏的核心理念,这个小游戏也不例外.简单的说,用户需要管理一个国家,使其繁荣富强.        一个…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2888 [题目大意] 不断加边,问每个连通块的重心到其它点的距离和的和 [题解] 启发式合并LCT,通过维护等差数列的首项和公差 来实现保存子树内所有节点到这个节点的距离之和. [代码] #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const in…
[BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载…
这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式合并,那么我们就可以在均摊O(log2n)的时间内合并一颗树,这题就可以完美的AC啦! 什么,你问怎么维护重心?我们可以记录一个值sb表示子树的大小.怎么维护sb呢?我们可以采用打标记的方法,把新加入的节点到根的路径上的点的sb值都+1 对于维护答案,我们维护一个sm变量,来保存子树内所有节点到这个…
题目链接 BZOJ 洛谷 详见这. 求所有点到某个点距离和最短,即求树的重心.考虑如何动态维护. 两棵子树合并后的重心一定在两棵树的重心之间那条链上,所以在合并的时候用启发式合并,每合并一个点检查sz[]大的那棵子树的重心(记为root)最大子树的sz[]*2是否>n: 若>n,则向fa移动一次(先把合并点Splay到根).重心还一定是在sz[]大的那棵子树中,且移动次数不会超过sz[]小的子树的点数(所以总移动次数不会超过O(n)?). 复杂度 \(O(nlog^2n)\) 具体实现..想通…
显然资源集合处就是树的重心,这题需要动态维护树的重心. 每个连通块以重心为根,用link-cut tree维护每个点的子树大小以及子树内所有点到它的距离和. 合并两个连通块时,考虑启发式合并,暴力往大的树中添加叶子. 添加叶子时,需要将叶子到重心路径上所有点的子树大小+1,距离和则加上一个等差数列. 并且新的重心是可能是原来的重心或者原来重心到叶子路径上的第一个点,暴力即可. 时间复杂度$O(n\log^2n)$.   #include<cstdio> #define N 40010 int…
容易写出nQ的暴力 由于数据是期望的时间 所以直接dfs可以跑的很快 可以拿到70分. 当然 可以进一步优化暴力 使用换根dp 然后可以将暴力优化到n^2. const int MAXN=300010; int n,Q,T,len,maxx; int lin[MAXN],d[MAXN],ver[MAXN<<1],nex[MAXN<<1]; inline void add(int x,int y) { ver[++len]=y; nex[len]=lin[x]; lin[x]=len…
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负整数表示 N个节点上的权值. 接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为"Q x y k"或者"L x y ",其含义见题目描述部分. Output 对于每一个第一类…
题目描述 在X星球上有N个国家,每个国家占据着X星球的一座城市.由于国家之间是敌对关系,所以不同国家的两个城市是不会有公路相连的. X星球上战乱频发,如果A国打败了B国,那么B国将永远从这个星球消失,而B国的国土也将归A国管辖.A国国王为了加强统治,会在A国和B国之间修建一条公路,即选择原A国的某个城市和B国某个城市,修建一条连接这两座城市的公路. 同样为了便于统治自己的国家,国家的首都会选在某个使得其他城市到它距离之和最小的城市,这里的距离是指需要经过公路的条数,如果有多个这样的城市,编号最小…
题意:一张图求每条边边权最多改成多少可以让所有MST都包含这条边. 这题还是要考察Kruskal的贪心过程. 先跑一棵MST出来.然后考虑每条边. 如果他是非树边,要让他Kruskal的时候被选入,必须要让他连的两个点$u,v$连通之前被选上,也就是说,必须得小于MST上$u,v$路径中的至少一条边,那么让他小于最大的那条(减一)即可. 如果他是树边,那么考虑如果删去他,他连接的两点如果要连通,可否用其他边替换.发现一定可以用经过这条边的非树边替换他,且会使用最小的一条非树边作为新的MST的边.…