最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28nm for Intelligent Embedded Systems 单位:STMicroelectronics(意法半导体) 这是一篇很综合芯片SOC设计,总体架构如下: 本文采用的DSP簇作为加速阵列,包含8个DSP簇,每簇内含2个3…
转载请注明,本文出自Bin的专栏http://blog.csdn.net/xbinworld,谢谢! DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN Processor for General-Purpose Deep Neural Networks 单位:KAIST(韩国科学技术院,电子工程-半导体系统实验室) KAIST是ISSCC的常客,一年要在上面发好几篇芯片论文,16年ISSCC上Session 14有一半的paper是出自KAIST的,只能说怎一个…
A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight Storage Using Non-Uniform Memory Hierarchy for Mobile Intelligence 单位:Michigan,CubeWorks(密歇根大学,CubeWorks公司) 又是一款做DNN加速的面向IOT的专用芯片,主要特点是有L1~L4四级不同速度.能耗的层次化存储.通过对全连接矩阵x向量的计算流程优化,最终可…
ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable CNN Processor in 28nm FDSOI 单位:EAST-MICAS, KU Leuven(鲁汶大学) 本文是我觉得本次ISSCC2017 session 14中最好的一篇,给人的启示有很多,比如一款SOC可以在非常大的能效范围内调节:比如DL加速需要多少组成部件以及有几种数据复用的形式:多种bit位宽…
A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor and a CIS Integrated with Always-On Haar-Like Face Detector 单位:KAIST(韩国科学技术院)--ISSCC上大神级的机构··· DNN的加速器,面向不同的应用有着不同的能效需求:0.1W~1W,1W~5W等,不同的应用场景需要不同的架构.但是在0.1w以下的空间,目前成熟的工…
A 28nm SoC with a 1.2GHz 568nJ/Prediction Sparse Deep-Neural-Network Engine with >0.1 Timing Error Rate Tolerance for IoT Applications 单位:Harvard(哈佛大学) 这是一篇专门为DNN加速设计的芯片,在CNN加速芯片设计当道的今天也算是非常另类了~~不过能在ISSCC上发表,自然也有它的innovation,下面讲一讲. 就我当前的可以理解部分(知识结构不足…
论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature上发表深度学习的综述性论文,介绍了什么是监督学习.反向传播来训练多层神经网络.卷积神经网络.使用深度卷积网络进行图像理解.分布式特征表示与语言处理.递归神经网络,并对深度学习技术的未来发展进行展望. 原文摘要: 1,深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.        …
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天简单写一篇. SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing 单位作者: 我们知道在神经网络计算中,最主要的计算就是乘加,本篇重点就是解释了什么是Stochastic Comp…
作者:Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma and Huamin Qu 本文发表于VIS2019, 来自于香港科技大学的可视化小组(屈华民教授领导)的研究 1. 简介 图数据广泛用于各个领域,例如生物信息学,金融和社交网络分析.在过去的五十年中,已经提出了许多图布局算法,来满足所需的视觉要求,例如更少的边缘交叉,更少的节点遮挡以及更好的聚团保护.传统的图布局算法大致可以分为两个方向:基于弹簧,能量模型和基于降维模型…