局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜索等领域. 1. 基本思想 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高…
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜…
Kernelized Locality-Sensitive Hashing Page   Brian Kulis (1) and Kristen Grauman (2)(1) UC Berkeley EECS and ICSI, Berkeley, CA(2) University of Texas, Department of Computer Sciences, Austin, TX Introduction Fast indexing and search for large databa…
一. 前言     最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP-N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量(cos,Pearson,Jaccard),然后利用通过两两计算相似度,计算top-n进行筛选,这种方法的时间复杂度为\(O(n^2)\)(对于每个用户,都和其他任意一个用户进行了比较)但是在实际应用中,对于亿级的用户量,这个时间复杂度是无法忍受的.同时,对于高维稀疏数据,计算相似度同样很耗时,即\(O…
局部敏感哈希 转载请注明http://blog.csdn.net/stdcoutzyx/article/details/44456679 在检索技术中,索引一直须要研究的核心技术.当下,索引技术主要分为三类:基于树的索引技术(tree-based index).基于哈希的索引技术(hashing-based index)与基于词的倒排索引(visual words based inverted index)[1]. 本文主要对哈希索引技术进行介绍. 哈希技术概述 在检索中.须要解决的问题是给定一…
一.引入 在做微博文本挖掘的时候,会发现很多微博是高度相似的,因为大量的微博都是转发其他人的微博,并且没有添加评论,导致很多数据是重复或者高度相似的.这给我们进行数据处理带来很大的困扰,我们得想办法把找出这些相似的微博,再对其进行去重处理. 如果只是要找到重复的微博,我们可以用两两比较所有的微博,对相同的微博值保留一条即可:但这只能在数据量很小的情况下才有可能,当我们有1000万条微博时,需要两两比较的微博有10^6亿(n*(n-1)/2)对,这个计算量是惊人的,即便你用map-reduce,拥…
LSH是我同学的名字,平时我会亲切的称呼他为离骚,老师好,左移(leftshift),小骚骚之类的,最近他又多了一个新的外号:局部敏感哈希(Locally sensitive hashing). 好了,废话不多说直接转入正题: 『写在前面』局部敏感哈希是一种NOIP禁用的算法(因为使用了随机数),若不感兴趣就无需往下看了. 『什么是LSH?』 LSH就是局部敏感哈希,听着名字就知道和普通的哈希不一样,具体哪里不一样,就先吊吊你的胃口,稍后再说.先来了解LSH的各方面性能: 首先先来思考一个问题:…
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈希,英文locality-sensetive hashing,常简称为LSH.局部敏感哈希在部分中文文献中也会被称做位置敏感哈希.LSH是一种哈希算法,最早在1998年由Indyk在[1]上提出.不同于我们在数据结构教材中对哈希算法的认识,哈希最开始是为了减少冲突方便快速增删改查,在这里LSH恰恰相…
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据的相似性,从数据集中寻找与目标数据最相似的项目,而这种相似性通常会被量化到空间上数据之间的距离,例如欧几里得距离(Euclidean distance),NN认为数据在空间中的距离越近,则数据之间的相似性越高. 当需要查找离目标数据最近的前k个数据项时,就是k最近邻检索(K-NN). 0x2:NN的…
http://blog.csdn.net/pipisorry/article/details/48858661 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记之 Locality-Sensitive Hashing(LSH) 局部敏感哈希 {This is the first half of discussion of a powerful technique for focusing search on things…