51Nod 快速傅里叶变换题集选刷】的更多相关文章

打开51Nod全部问题页面,在右边题目分类中找到快速傅里叶变换,然后按分值排序,就是本文的题目顺序. 1.大数乘法问题 这个……板子就算了吧. 2.美妙的序列问题 长度为n的排列,且满足从中间任意位置划分为两个非空数列后,左边的最大值>右边的最小值.问这样的排列有多少个%998244353. 多组询问,n,T<=100000. 题解:经过分析可知,不合法的排列一定存在这样一种划分: 我们考虑答案=f[i]=i!-不合法排列个数. 形如 2 1 3 4 6 5 这种排列,会有三种划分方式不合法(…
2070 最小罚款: 题意:初始有n元,每个任务有2个参数:t和w,<=t时刻前完成任务才可避免造成损失w.问:如何安排才能尽可能避免损失?一个任务执行时间是一个单位时间. 分析:任务按时间排个序,来一个储存每个任务w的最小堆.执行当前任务(相当于入堆),若发现执行后,时间并不超越自己的截止日期(当前时间是执行任务数,亦即当前堆size),那自然入堆,否则说明当前任务其实是不够位置放的,那么要做一个抉择:是否要保留当前任务?或者是把前面哪个要执行的任务踢出去.要踢出的自然是那个带来利益最小的了(…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…
目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优化 细节 小优化 实现 超~毒瘤优化. 实战! First Second 温馨插入:生成函数 Third 总所周知,FFT是一个非常麻烦的算法,再加上博主语文不好,便写起来有点麻烦,但会尽力去写.要以后自己看不懂就... 注:因为最近的压力紧张,便没有继续学习FFT,这仅为目前的半成品以及一些目前已…
现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformation, 快速傅里叶变换, 是DFT(Discrete Fourier Transform, 离散傅里叶变换)的快速实现版本. 据说在信号处理领域广泛的应用, 而且在OI中也有广泛的应用(比如SDOI2017 R2至少考了两道), 所以有必要学习一波.. 划重点: 其实学习FFT最好的教材是<算法导论…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通过两个函数 \(f\) 和 \(g\)​​ 生成第三个函数的一种数学算子. 定义 设 \(f,g\)​ 在 \(R1\)​ 上可积,那么 \(h(x) = \int_{-∞}^∞f(\tau)g(x-\tau)d\tau\) 称为 \(f\) 与 \(g\)​ 的卷积. 对于整系数多项式域,\(n-…
前言 啊摸鱼真爽哈哈哈哈哈哈 这个假期努力多更几篇( 理解本算法需对一些< 常 用 >数学概念比较清楚,如复数.虚数.三角函数等(不会的自己查去(其实就是懒得写了(¬︿̫̿¬☆) 整理了一点点资料(确信 本文仅为作者的总结与完善和本人的理解与观点,有任何误导性错误请多多指出 [WARNING]文笔极差,文章极度啰嗦且可能有些迷惑hhh,尽力了_(:з)∠)_ 概述(可略过 离散傅里叶变换(Discrete Fourier Transform,缩写为 DFT),是傅里叶变换在时域和频域上都呈离散…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…