注意力(Attention)与Seq2Seq的区别】的更多相关文章

什么是注意力(Attention)? 注意力机制可看作模糊记忆的一种形式.记忆由模型的隐藏状态组成,模型选择从记忆中检索内容.深入了解注意力之前,先简要回顾Seq2Seq模型.传统的机器翻译主要基于Seq2Seq模型.该模型分为编码层和解码层,并由RNN或RNN变体(LSTM.GRU等)组成.编码矢量是从模型的编码部分产生的最终隐藏状态.该向量旨在封装所有输入元素的信息,以帮助解码器进行准确的预测.其用于充当模型解码器部分的初始隐藏状态. Seq2Seq模型的主要瓶颈是需要将源序列的全部内容压缩…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
目录: 1. 前提 2. attention (1)为什么使用attention (2)attention的定义以及四种相似度计算方式 (3)attention类型(scaled dot-product attention \ multi-head attention) 3. self-attention (1)self-attention的计算 (2) self-attention如何并行 (3) self-attention的计算总结 (4) self-attention的类型(multi-…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的Attention Model的核心思想. 人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的…
最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制(2017版) 张俊林的博客,不过添加了一些个人的思考与理解过程.在github上找到一份基于keras框架实现的可运行的注意模型代码:Attention_Network_With_Keras.如有不足之处,欢迎交流指教. 注意力模型:对目标数据进行加权变化.人脑的注意力模型,说到底是一种资源分配模型…
之前在看<Semi-supervised Sequence Learning>这篇文章的时候对seq2seq半监督的方式做文本分类的方式产生了一定兴趣,于是开始简单研究了seq2seq.先来简单说一下这篇paper的内容: 创立的新形式Sequence AutoEncoder LSTM(SA-LSTM),Pre-trained RNNs are more stable, generalize better, and achieve state-of-the-art results on var…
此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正.. 1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的At…
RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b),但是依然没有输出) 这里RNN同时和当前的输入有关系,并且是上一层的输出有关系. 初步的RNN(增加输出softmax(Wx+b),输出和hidden state的区别是对wx+b操作的函数不同) 备注多层的神经细胞和全连接层的区别: 全连接层只有:输入.输出和权重矩阵, 如下图. 初步的RNN和…