首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
】的更多相关文章
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现
Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 2.1.1 训练模型 2.1.2 加载模型 2.2 分割高维向量 2.3 迭代训练 2.3.1 Flink Stream迭代功能 2.3.2 迭代构建 2.3.2.1 迭代的输入 2.3.2.2 迭代的反馈 2.3.3 迭代体 CalcTask / ReduceTask 2.3.3.1 迭代初始化…
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 1.1.2 求解 1.1.3 随机梯度下降 1.2 LR的并行计算 1.3 传统机器学习 1.4 在线学习 1.5 FTRL 1.5.1 regret & sparsity 1.5.2 FTRL的伪代码 1.5.3 简要理解 0x02 示例代码 0x03 问题 0x04 总体逻辑 0xFF 参考 0…
各大公司广泛使用的在线学习算法FTRL详解
各大公司广泛使用的在线学习算法FTRL详解 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和在线数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的FTRL(Follow-the-regularized-Leader)算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控制和稀疏化)的凸优化问题上性能非常出色,据闻国内各大互联网公司都第一时间应…
各大公司广泛使用的在线学习算法FTRL详解 - EE_NovRain
转载请注明本文链接:http://www.cnblogs.com/EE-NovRain/p/3810737.html 现在做在线学习和CTR常常会用到逻辑回归( Logistic Regression),而传统的批量(batch)算法无法有效地处理超大规模的数据集和数据流,google先后三年时间(2010年-2013年)从理论研究到实际工程化实现的 FTRL(Follow-the-regularized-Leader) 算法,在处理诸如逻辑回归之类的带非光滑正则化项(例如1范数,做模型复杂度控…
广告点击率预测(CTR) —— 在线学习算法FTRL的应用
FTRL由google工程师提出,在13的paper中给出了伪代码和实现细节,paper地址:http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf 本文旨在算法的应用,推导和优化过程详见paper,推荐一篇博文http://www.cnblogs.com/EE-NovRain/p/3810737.html,有兴趣的可以详读. per-coordinate FTRL_Proximal的伪代码如下: α根据数据和特征自适…
在线优化算法 FTRL 的原理与实现
在线学习想要解决的问题 在线学习 ( \(\it{Online \;Learning}\) ) 代表了一系列机器学习算法,特点是每来一个样本就能训练,能够根据线上反馈数据,实时快速地进行模型调整,使得模型及时反映线上的变化,提高线上预测的准确率.相比之下,传统的批处理方式需要一次性收集所有数据,新数据到来时重新训练的代价也很大,因而更新周期较长,可扩展性不高. 一般对于在线学习来说,我们致力于解决两个问题: 降低 regret 和提高 sparsity.其中 regret 的定义为: \[\te…
Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想
Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想 目录 Alink漫谈(一) : 从KMeans算法实现不同看Alink设计思想 0x00 摘要 0x01 Flink 是什么 0x02 Alink 是什么 0x03 Alink设计思路 1. 白手起家 2. 替代品如何造成威胁 3. 用户角度看设计 底层逻辑Flink 开发工具 4. 竞争对手角度看设计 5. 企业角度看设计 6. 设计原则总结 0x04 KMeans算法实现看设计 1. KMeans算法 2. Flink…
Bandit:一种简单而强大的在线学习算法
假设我有5枚硬币,都是正反面不均匀的.我们玩一个游戏,每次你可以选择其中一枚硬币掷出,如果掷出正面,你将得到一百块奖励.掷硬币的次数有限(比如10000次),显然,如果要拿到最多的利益,你要做的就是尽快找出"正面概率最大"的硬币,然后就拿它赚钱了. 这个问题看起来很数学化,其实它在我们的生活中经常遇见.比如我们现在有很多在线场景,遇到一个相同的问题:一个平台这么多信息,该展示什么给用户,才能有最好的收益(比如点击率)? Google作为最大的搜索广告公司,在用户搜索时该展示什么广告:F…
Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构
Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 目录 Alink漫谈(二) : 从源码看机器学习平台Alink设计和架构 0x00 摘要 0x01 Alink设计原则 0x02 Alink实例代码 算法调用 算法主函数 算法模块举例 0x03 顶层 -- 流水线 1. 机器学习重要概念 2. Alink中概念实现 3. 结合实例看流水线 0x04 中间层 -- 算法组件 1. Algorithm operators 2. Mapper(提前说明) 3. 系统内置算法组件 Mo…
Alink漫谈(十一) :线性回归 之 L-BFGS优化
Alink漫谈(十一) :线性回归 之 L-BFGS优化 目录 Alink漫谈(十一) :线性回归 之 L-BFGS优化 0x00 摘要 0x01 回顾 1.1 优化基本思路 1.2 各类优化方法 0x02 基本概念 2.1 泰勒展开 如何通俗推理? 2.2 牛顿法 2.2.1 泰勒一阶展开 2.2.2 泰勒二阶展开 2.2.3 高维空间 2.2.4 牛顿法基本流程 2.2.5 问题点及解决 2.3 拟牛顿法 2.4 L-BFGS算法 0x03 优化模型 -- L-BFGS算法 3.1 如何分布…