首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Tensorflow学习教程------参数保存和提取重利用
】的更多相关文章
Tensorflow学习教程------参数保存和提取重利用
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_varia…
tensorflow学习之路----保存和提取数据
#保存数据注意他只能保存变量,不能保存神经网络的框架.#保存数据的作用:保存权重有利于下一次的训练,或者可以用这个数据进行识别#np.arange():arange函数用于创建等差数组,使用频率非常高import tensorflow as tf#注意:在保存变量的时候,一定要写出他的类型即dtypeWeights = tf.Variable([[1,2,3],[3,4,5]],dtype=tf.float32,name="Weights")baises = tf.Variable([…
Tensorflow学习教程------过拟合
Tensorflow学习教程------过拟合 回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机抽取部分参与训练.部分不参与 最后对之前普通神经网络分类mnist数据集的代码进行优化,初始化权重参数的时候采用截断正态分布,偏置项加常数,采用dropout防止过拟合,加三层隐层神经元,最后的准确率达到97%以上.代码如下 # coding: utf-8 # 微信公众号:深度学习与神经网络 # G…
Tensorflow学习教程------代价函数
Tensorflow学习教程------代价函数 二次代价函数(quadratic cost): 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数.为简单起见,使用一个样本为例进行说明,此时二次代价函数为: 假如我们使用梯度下降法(Gradient descent)来调整权值参数的大小,权值w和偏置b的梯度推导如下: 其中,z表示神经元的输入,σ表示激活函数.w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快.假设我…
Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例
紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecord…
TensorFlow学习笔记:保存和读取模型
TensorFlow 更新频率实在太快,从 1.0 版本正式发布后,很多 API 接口就发生了改变.今天用 TF 训练了一个 CNN 模型,结果在保存模型的时候居然遇到各种问题.Google 搜出来的答案也是莫衷一是,有些回答对 1.0 版本的已经不适用了.后来实在没办法,就翻了墙去官网看了下,结果分分钟就搞定了-囧-. 这篇文章内容不多,主要讲讲 TF v1.0 版本中保存和读取模型的最简单用法,其实就是对官网教程的简要翻译摘抄. 保存和恢复 在 TensorFlow 中,保存和恢复模型最简单…
tensorflow 学习教程
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册2:https://data-flair.training/blogs/tensorflow-wide-and-deep-learning/ 详细的 op 数据操作 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/con…
Tensorflow学习教程------模型参数和网络结构保存且载入,输入一张手写数字图片判断是几
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size…
Tensorflow学习教程------tfrecords数据格式生成与读取
首先是生成tfrecords格式的数据,具体代码如下: #coding:utf-8 import os import tensorflow as tf from PIL import Image cwd = os.getcwd() ''' 此处我加载的数据目录如下: bt -- 14018.jpg 14019.jpg 14020.jpg nbt -- 1_ddd.jpg 1_dsdfs.jpg 1_dfd.jpg 这里的bt nbt 就是类别,也就是代码中的classes ''' writer…
Tensorflow学习教程------创建图启动图
Tensorflow作为目前最热门的机器学习框架之一,受到了工业界和学界的热门追捧.以下几章教程将记录本人学习tensorflow的一些过程. 在tensorflow这个框架里,可以讲是若数据类型,也就是说不严格声明数据是什么类型,因为在整个过程中玩的都是向量,或者说矩阵和数组,所有的数据都被看做是一个tensor, 一个或者几个tensor经过一个op(operation)之后,产生新的tensor.首先将所有tensor和op都定义好,然后把这套tensor和op的组合放到默认的图里,用会话…